Published online by Cambridge University Press: 01 February 2011
Rapid development in the area of low-temperature fuel cells has led to increased attention on catalyst synthesis with cost effective and environmentally-benign technology (green chemistry). In this study, a highly dispersed palladium nanoparticle catalyst was successfully prepared on a bacterial cell support by a single-step, room-temperature microbial method without dispersing agents. The metal ion reducing bacterium Shewanella oneidensis were able to reduce palladium ions into insoluble palladium at room temperature when formate was provided as the electron donor. The prepared biomass-supported palladium nanoparticles were characterized for their catalytic activity as anodes in polymer electric membrane fuel cell for power production. The maximum power generation of the biomass-supported palladium catalyst was up to 90% of that of a commercial palladium catalyst.