Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T04:34:34.327Z Has data issue: false hasContentIssue false

Biopreparation of Highly Dispersed Pd Nanoparticles on Bacterial Cell and Their Catalytic Activity for Polymer Electrolyte Fuel Cell

Published online by Cambridge University Press:  01 February 2011

Takashi Ogi
Affiliation:
ogi@chemeng.osakafu-u.ac.jp, Osaka Prefecture University, Sakai, Japan
Ryuichi Honda
Affiliation:
rhonda@chemeng.osakafu-u.ac.jp, Osaka Prefecture University, Sakai, Japan
Koshiro Tamaoki
Affiliation:
kotamaoki@chemeng.osakafu-u.ac.jp, Osaka Prefecture University, Sakai, Japan
Norizo Saito
Affiliation:
n_saito@chemeng.osakafu-u.ac.jp, Osaka Prefecture University, Sakai, Japan
Yasuhiro Konishi
Affiliation:
yasuhiro@chemeng.osakafu-u.ac.jp, Osaka Prefecture University, Sakai, Japan
Get access

Abstract

Rapid development in the area of low-temperature fuel cells has led to increased attention on catalyst synthesis with cost effective and environmentally-benign technology (green chemistry). In this study, a highly dispersed palladium nanoparticle catalyst was successfully prepared on a bacterial cell support by a single-step, room-temperature microbial method without dispersing agents. The metal ion reducing bacterium Shewanella oneidensis were able to reduce palladium ions into insoluble palladium at room temperature when formate was provided as the electron donor. The prepared biomass-supported palladium nanoparticles were characterized for their catalytic activity as anodes in polymer electric membrane fuel cell for power production. The maximum power generation of the biomass-supported palladium catalyst was up to 90% of that of a commercial palladium catalyst.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Glaspell, G., Fuoco, L., and El-Shall, M.S., J. Phys. Chem. B 109, 17350 (2005).Google Scholar
2 Glaspell, G., Hassan, H.M.A., Elzatahry, A., Abdalsayed, V., and El-Shall, M.S., Top. Catal. 47 22, (2008).Google Scholar
3 Campelo, J.M., Conesa, T.D., Gracia, M.J., Jurado, M.J., Luque, R., Marinas, J.M., and Romero, A.A., Green Chem. 10, 853 (2008).Google Scholar
4 Okumura, M., Nakamura, S., Tsubota, S., Nakamura, T., Azuma, M., and Haruta, M., Catal. Lett. 51, 53 (1998).Google Scholar
5 Watanabe, M., Uchida, M., and Motoo, S., J. Electroanal. Chem. 229, 395 (1987).Google Scholar
6 Barau, A., Budarin, V., Caragheorgheopol, A., uque, R.L, Macquarrie, D. J., Prelle, A., Teodorescu, V. S., and Zaharescu, M., Catal. Lett. 124, 204 (2008).Google Scholar
7 Liang, C.H., Xia, W., Soltani-Ahmadi, H., Schluter, O., Fischer, R.A., and Muhler, M., Chem. Commun. 2, 282 (2005).Google Scholar
8ZZhou, .H., Wang, S.L., Zhou, W.J., Wang, G.X., Jiang, L.H., Li, W.Z., Song, S.Q., Liu, J.G., Sun, GQ., and Xin, Q., Chem. Commun. 3, 394 (2003).Google Scholar
9 Liu, Z.L., Lee, J.Y., Han, M., Chen, W.X., and Gan, L.M., J. Mater. Chem. 12, 2453 (2002).Google Scholar
10 Zhang, X. and Chan, K.Y., Chem. Mat. 15, 451 (2003).Google Scholar
11 Baxter-Plant, V., Mikheenko, I. P., Macaskie, L. E., Biodegradation 14, 83 (2003).Google Scholar
12 Baxter-Plant, V. S., Mikheenko, I. P., Robson, M., Harrad, S. J., Macaskie, L. E., Biotechnology Letters 26 1885 (2004).Google Scholar
13 Windt, W. De, Aelterman, P., Verstraete, W., Environmental Microbiology 7 314 (2005).Google Scholar
14 Windt, W. De, Boon, N., Bulcke, J. Van den, Rubberecht, L., Prata, F., Mast, J., Hennebel, T., Verstraete, W., Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 90 377 (2006).Google Scholar
15 Harrad, S., Robson, M., Hazrati, S., Baxter-Plant, V. S., Deplanche, K., Redwood, M. D., Macaskie, L. E., Journal of Environmental Monitoring 9 314 (2007).Google Scholar
16 Mertens, B., Blothe, C., Windey, K., Windt, W. De, Verstraete, W., Chemosphere 66 99 (2007).Google Scholar
17 Redwood, M. D., Deplanche, K., Baxter-Plant, V. S., Macaskie, L. E., Biotechnology and Bioengineering 99 1045 (2008).Google Scholar
18 Hennebel, T., Simoen, H., Windt, W. De, Verloo, M., Boon, N., Verstraete, W., Biotechnology and Bioengineering 102 995 (2009).Google Scholar