Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T00:26:59.572Z Has data issue: false hasContentIssue false

Bonding and Penetration at Metal/Self-Assembled Organic Monolayer Interfaces

Published online by Cambridge University Press:  15 February 2011

D. R. Jung
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
A. W. Czanderna
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
G. C. Herdt
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Get access

Abstract

The purpose of research on metals (M) deposited onto self-assembled monolayers (SAMs) is to understand the interactions between the metal and eventually metal oxide overlayers on well-ordered organic substrates. Applications of M/SAM and inorganic/SAM research results to the understanding of real inorganic/organic interfaces in vacuum and under environmental conditions can potentially play a key role in the development of advanced devices with stable interfacial properties. The results of selected M/SAM studies to date are reviewed, and MISAM combinations ranked according to reactivity and penetration. Specific examples of reactive interfaces (Cu/COOH, Cr/several groups) and nonreactive interfaces with penetration (Ag/CH3, Ag/COOH) are used to illustrate the extremes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Czanderna, A.W., King, D.E., and Spaulding, D., J. Vac Sci. Technol. A 9, 2607 (1991).Google Scholar
2. Jung, D.R., King, D.E., and Czanderna, A.W., Appl. Surf. Sci. 70/71, 127 (1993).Google Scholar
3. Jung, D.R., King, D.E.,, and Czanderna, A.W., J. Vac. Sci. Technol. A 11, 2382 (1993).Google Scholar
4. Jung, D.R. and Czanderna, A.W., Mater. Res. Soc. Symp. Proc. 304, 131 (1993).Google Scholar
5. Herdt, G. and Czanderna, A.W., Surf. Sci. Lett. 297, L109 (1993).Google Scholar
6. Herdt, G. and Czanderna, A.W., J. Vac. Sci. Technol. A 12, 2410 (1994).Google Scholar
7. Tarlov, M.J., Langmuir 8, 80 (1992).Google Scholar
8. Zhang, P., Ph.D. thesis, Department of Materials Science and Engineering, Pennsylvania State University, 1993.Google Scholar
9. Opila, R.L., Konstadinidis, K., Allara, D.L., and P. Zhang (private communication).Google Scholar
10. Jung, D.R. and Czanderna, A.W., Crit. Rev. Solid State Mater. Sci. 19, 1 (1994).Google Scholar
11. Jung, D.R. and Czanderna, A.W., J. Vac. Sci. Technol. A 12, 2402 (1994).Google Scholar
12. Sacher, E., Pireaux, J.J., and Kowalczyk, S.P., (1990), in Metallization of Polymers, ACS Symposium Series, series editor, Comstock, M. J., (American Chemical Society, Washington, DC) and references.Google Scholar
13. Netzer, F.P. and Ransey, M.G., Crit. Rev. Solid State Mater. Sci. 17, 397 (1992).Google Scholar
14. Albert, M.R. and Yates, J.T., The Surface Scientist's Guide to Organometallic Chemistry (American Chemical Society, Washington, DC, 1987).Google Scholar
15. Burkstrand, J. M., J. Vac. Sci. Technol. 20, 440 (1982).Google Scholar
16. Burkstrand, J.M., J. Appl. Phys. 50, 1152 (1978); 52, 4795 (1982).Google Scholar
17. Kostanididis, K., Opila, R.L., Taylor, J.A., and Miller, A.C., in Ref. 4., 83–90.Google Scholar
18. Anderson, S.G., Leu, J., Silverman, B.D., and Ho, P.S., J. Vac. Sci. Technol. A 11, 368 (1993).Google Scholar
19. Goldberg, M.J., Clabes, J.G., and Kovac, C.A., J. Vac. Sci. Technol. A 6, 991 (1988).Google Scholar
20. Jordan, J.L., Kovac, C.A., Morar, J.F., and Pollack, R.A., Phys. Rev. B 36, 1369 (1987).Google Scholar
21. Nuzzo, R.G. and Allara, D.L., J. Am. Chem. Soc. 105, 4481 (1983).Google Scholar
22. Allara, D.L. and Nuzzo, R.G., Langmuir, 1, 45 (1985); 52 (1985).Google Scholar
23. Ulman, A., An Introduction to Ultrathin Organic Films (Academic, New York, 1991).Google Scholar
24. Dubois, L.H. and Nuzzo, R.G., Annu. Rev. Phys. Chem. 43, 437 (1992).Google Scholar
25. Bain, C.D., Troughton, E.B., Tao, Y.-T., Evall, J., Whitesides, G.M., and Nuzzo, R.G., J. Am. Chem. Soc. 111, 321 (1989).Google Scholar
26. King, D.E. and Czanderna, A.W., Surf. Sci. Lett. 235, L329 (1990).Google Scholar
27. Vig, J.R., J. Vac. Sci. Technol. A 3, 1027 (1985).Google Scholar
28. Pitts, J.R., Ph.D. dissertation, Department of Physics, University of Denver, CO, 1985.Google Scholar
29. Allara, D.L., Jung, D.R., and Zhang, P., Metal atom reactions with self-assembled monolayers, paper presented at 39th Natl. Symp. American Vacuum Society, Chicago, November 9 to 13, 1992. (D.L. Allara, private communication.)Google Scholar
30. Bammel, K., Ellis, J., and Rubahn, H.-G., Chem. Phys. Lett. 201, 101 (1993).Google Scholar
31. Balzer, F., Bammel, K., and Rubahn, H.-G., J. Chem. Phys. 98, 7625 (1993).Google Scholar
32. Herdt, G. and Czanderna, A.W., J. Vac. Sci. Technol. A 13, (1995) In Press.Google Scholar
33. Independent observations by Allara, D.L., et al. at Penn State U., R.L. Opila, et. al. at ATT-Bell Labs, and A.W. Czanderna, et. al. at NREL.Google Scholar
34. Wertheim, G.K., Z. Phys. B 66, 53 (1987).Google Scholar
35. Spaulding, D., thesis, M.S., Materials Science Dept., University of Denver, Denver, CO, 1989.Google Scholar
36. A.W. Czanderna and R.J. Gottschall, Eds., Mat. Sci. Engr. 53, 1–168 (1982).Google Scholar
37. Swalen, J.D., Allara, D.L., Andrade, J.D., Chandross, E.A., Garoff, S., Israelachvili, J., McCarthy, T.J., Murray, R., Pease, R.F., Rabolt, J.F., Wynne, K.J., and Yu, H., Langmuir 3, 932 (1987).Google Scholar
38. Czanderna, A.W. and Landgrebe, A.R., Eds., Current Status, Research Needs and Opportunities in Applications of Surface Processing to Transportation and Utilities Technologies, Crit. Rev. Surf. Chem. 2 (Nos. 1–4) and 3 (No. 1), 1993.Google Scholar
39. Czanderna, A.W., J. Vac. Sci. Technol. 14, 408 (1977).Google Scholar