Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T08:58:20.826Z Has data issue: false hasContentIssue false

Bone-Inspired Multicomponent Bionanocomposites with a Simple Drop-Cast Processing Strategy

Published online by Cambridge University Press:  18 July 2011

Abhijit Biswas
Affiliation:
Center for Nano Science and Technology (NDnano), Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, U.S.A.
Alexandru S. Biris
Affiliation:
Nanotechnology Center, Applied Science Department, University of Arkansas at Little Rock, AR 72204, U.S.A.
Ilker S. Bayer
Affiliation:
Center for Biomolecular Nanotechnologies, Smart Materials Platform, Italian Institute of Technology, Lecce 73010, Italy.
Get access

Abstract

We describe an innovative and simple drop-cast processing strategy to create bonelike multicomponent bionanocomposite materials that consist of an organic poly(ε-caprolactone) (PCL) matrix, minerals such as hydroxyapatite (HAP) and CaCO3, and collagen fibers. The process allows morphological and structural control to achieve the desired nanostructure of the bone mimics. The fabrication method involves adding inorganic and organic components sequentially followed by controlling the growth conditions and composition. This enables organization of collagen nanofibers (∼ 100 nm) into scaffolds while simultaneously allowing nucleation and co-alignment of hydroxyapatite spheres (∼ 100 – 500 nm) within aligned, thermally stable collagen fibers in the porous PCL matrix. We achieved high calcium (26%) and oxygen (17%) within the bioscaffold and adequate phosphorous compositions comparable to the levels of bone tissues. Adequate mineralization along with high oxygen content may help maintain the required bone mineral density and revascularization for nutrient and compensate for the loss of oxygen delivered to the bone cells. Furthermore, since the bionanocomposite scaffold is made of natural materials (calcium, phosphorous and collagen) found in bone tissue, the formulation makes it an excellent biocompatible/biodegradable material. Our preliminary results suggest huge potential of these advanced bionanocomposite scaffolds for bone substitutes and tissue engineering applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murugan, R., Ramakrishna, S., Compos. Sci. Technol. 65, 2385 (2005).10.1016/j.compscitech.2005.07.022Google Scholar
2. Seto, J., Gupta, H. S., Zaslansky, P., Wagner, H. D., Fratzl, P., Adv. Funct. Mater. 18, 1905 (2008).10.1002/adfm.200800214Google Scholar
3. Weiner, S., Wagner, H. D., Annu. Rev. Mater. Sci. 28, 271 (1998).10.1146/annurev.matsci.28.1.271Google Scholar
4. Giraud-Guille, M. M., Calcif. Tissue Int. 42, 167 (1988).10.1007/BF02556330Google Scholar
5. Traub, W., Arad, T., Weiner, S., Proc. Natl. Acad. Sci. U.S.A. 86, 9822 (1989).10.1073/pnas.86.24.9822Google Scholar
6. Hule, R. A., Pochan, D. J., MRS Bulletin 32, 354 (2007).10.1557/mrs2007.235Google Scholar
7. Hollister, S. J., Nat. Mat. 4, 518 (2005).10.1038/nmat1421Google Scholar
8. Nassif, N., Gobeaux, F., Seto, J., Belamie, E., Davidson, P., Panine, P., Mosser, G., Fratzl, P., Giraud-Guille, M.M., Chem. Mater. 22, 3307 (2010).10.1021/cm903594nGoogle Scholar
9. NIH Consensus Panel. “The Orthopedic Form NIH Consensus Statement on Total Knee Replacement December 8-10,2003”, The Journal of Bone and Joint Surgery 86, 1328 (2004).Google Scholar
10. L Liu, Y., Schoenaers, J., De Groot, K., De Wijn, J. R., Schepers, E., J. Mater. Sci.- Mater. Med. 11, 711 (2000).10.1023/A:1008971611885Google Scholar
11. Darder, M., Aranda, P., Ruiz-Hitzky, E., Adv. Mater. 19, 1309 (2007).10.1002/adma.200602328Google Scholar
12. Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y., Takakuda, K., Monma, H., Tanaka, J., J. Biomed. Mater. Res. 55, 20 (2001).10.1002/1097-4636(200104)55:1<20::AID-JBM30>3.0.CO;2-F3.0.CO;2-F>Google Scholar
13. Biswas, A., Bayer, I. S., Zhao, He, Wang, T., Watanabe, F., Biris, A. S., Biomacromolecules 11, 2545 (2010).10.1021/bm1009359Google Scholar
14. Kaufman, J. M., Clin. Rheumatol. 14, 9 (1995).10.1007/BF02210681Google Scholar
15. Ross Garett, I., Boyce, F. B., Oreffo, O. C. R., Bonewald, L., Poser, J., Mundy, R. G., J. Clin. Invest. 85, 632 (1990).10.1172/JCI114485Google Scholar
16. Kloss, F.R., Francis, L.A., Sternschulte, H., Klauser, F., Gassner, R., Rasse, M., Bertel, E., Lechleitner, T., Steinmüller-Nethl, D., Biomaterials 29, 2433 (2008).10.1016/j.biomaterials.2008.01.036Google Scholar
17. Privalov, P. L., Adv. Prot. Chem. 35, 1 (1982).Google Scholar
18. Ruppel, M. E., Miller, L. M., Burr, D. B., Osteoporos Int. 19, 1251 (2008).10.1007/s00198-008-0579-1Google Scholar