No CrossRef data available.
Published online by Cambridge University Press: 16 February 2011
In this paper we report results on the optoelectronic and structural properties of device-quality a-SixC1−x:H intrinsic films with energy gap of 1.94 eV and Urbach energy of 70 MeV, grown by PECVD of SiH4+CH4 Mixture, which have been doped by means of boron or phosphorus ion implantation. Doping levels varied in the range 1018 to 5×1020 atoms/cm3. The behaviour of electrical characteristics, as well as energy gap and defect density, Measured on samples annealed in the range 150–400°C, showed that the optimum annealing temperature for the recovery of radiation damage is in the range 250–270°C independent of the implanted dose. Our results also show that after ion implantation and annealing, an increase of the SiH bonds concentration is detected, which is associated to a decrease of the contribution of SiH2, SiCH3, and SiCH vibrations in IR spectra.