Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T01:26:18.338Z Has data issue: false hasContentIssue false

Bottom Contact Ambipolar Organic Thin Film Transistors Based on C60/Pentacene Heterostructure

Published online by Cambridge University Press:  26 February 2011

Kaname Kanai
Affiliation:
kaname@mat.chem.nagoya-u.ac.jp, Nagoya University, Chemistry, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan, +81-52-789-3657, +81-52-789-2944
Suidong Wang
Affiliation:
dong@mat.chem.nagoya-u.ac.jp, Nagoya University, Nagoya, 464-8602, Japan
Kazuhiko Seki
Affiliation:
seki@mat.chem.nagoya-u.ac.jp, Nagoya University, Nagoya, 464-8602, Japan
Get access

Abstract

We report the fabrication and characterization of the bottom contact organic thin film transistors and inverter based on a heterostructure of C60 on pentacene. The transistor shows ambipolar transport characteristics with high electron and hole mobilities of 0.23 cm2V−1s−1 and 0.14 cm2V−1s−1, respectively. After exposure to air, the n-channel in C60 is completely degraded whereas the p-channel in pentacene keeps working. Both the n-channel and the p-channel are stable in N2 atmosphere. The inverter exhibits typical transfer characteristics, which are interpreted by the distribution of the accumulated electrons and holes depending on the bias conditions. These results suggest a potential way to fabricate organic complementary circuits with a single organic heterostructure device.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimitrakopoulos, C.D., Malenfant, P. R. L., Adv. Mater. 14 99 (2002).Google Scholar
2. Crone, B., Dodabalapur, A., Lin, Y.Y., Filas, R.W., Bao, Z., LaDuca, A., Sarpeshkar, R., Katz, H.E., Li, W., Nature 403 521 (2000).Google Scholar
3. Tapponnier, A., Biaggio, I., Günter, P., Appl. Phys. Lett. 86 112114 (2005).Google Scholar
4. Lin, Y.Y., Gundlach, D.J., Nelson, S.F., Jackson, T.N., IEEE Electr. Device Lett. 18 606 (1997).Google Scholar
5. Dodabalapur, A., Laquindanum, J., Katz, H.E., Bao, Z., Appl. Phys. Lett. 69 4227 (1996).Google Scholar
6. Kanbara, T., Shibata, K., Fujiki, S., Kubozono, Y., Kashino, S., Urisu, T., Sakai, M., Fujiwara, A., Kumashiro, R., Tanigaki, K., Chem. Phys. Lett. 379 223 (2003).Google Scholar
7. Inoue, Y., Sakamoto, Y., Suzuki, T., Kobayashi, M., Gao, Y., Tokito, S., Jpn. J. Appl. Phys. 44 3663 (2005).Google Scholar
8. Dodabalapur, A., Katz, H.E., Torsi, L., Haddon, R.C., Science 269 1560 (1995).Google Scholar
9. Dodabalapur, A., Katz, H.E., Torsi, L., Haddon, R.C., Appl. Phys. Lett. 68 1108 (1996).Google Scholar
10. Rost, C., Gundlach, D.J., Karg, S., Riess, W., J. Appl. Phys. 95 5782 (2004).Google Scholar
11. Wang, J., Wang, H.B., Yan, X.J., Huang, H.C., Yan, D.H., Chem. Phys. Lett. 407 87 (2005).Google Scholar
12. Kuwahara, E., Kubozono, Y., Hosokawa, T., Nagano, T., Masunari, K., Fujiwara, A., Appl. Phys. Lett. 85 4765 (2004).Google Scholar
13. Kuwahara, E., Kusai, H., Nagano, T., Takayanagi, T., Kubozono, Y., Chem. Phys. Lett. 413 379 (2005).Google Scholar
14. Ishii, H., Sugiyama, K., Ito, E., Seki, K., Adv. Mater. 11 605 (1999).Google Scholar
15. Amy, F., Chan, C., Kahn, A., Org. Electron. 6 85 (2005).Google Scholar
16. Veenstra, S.C., Heeres, A., Hadziioannou, G., Sawatzky, G.A., Jonkman, H.T., Appl. Phys. A 75 661 (2002).Google Scholar
17. Kymissis, I., Dimitrakopoulos, C.D., Purushothaman, S., IEEE Trans. Electron Devices 48 1060 (2001).Google Scholar
18. Haddon, R.C., Perel, A.S., Morris, R.C., Palstra, T.T.M., Hebard, A.F., Fleming, R.M., Appl. Phys. Lett. 67 121 (1995).Google Scholar