Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T13:22:37.454Z Has data issue: false hasContentIssue false

Breaking of Raman selection rules in Cu2O by intrinsic point defects

Published online by Cambridge University Press:  14 January 2014

Thomas Sander*
Affiliation:
I. Physikalisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
Christian T. Reindl
Affiliation:
I. Physikalisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
Peter J. Klar
Affiliation:
I. Physikalisches Institut, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
Get access

Abstract

The semiconductor cuprous oxide crystallizes in a simple cubic structure and reveals outstanding characteristics: Independent of the method and conditions of the synthesis of crystalline Cu2O its Raman spectra are dominated by infrared active, silent, and defect modes rather than by Raman allowed phonon modes only. A detailed group theoretical analysis demonstrates that point defects reduce the local symmetry, lift the Raman selection rules, and thus diminish the distinction between Raman allowed and Raman forbidden lattice vibrations. Of all intrinsic defects only the presence of the copper vacancy in the so called split configuration introduces possible Raman activity for all Cu2O extended phonon modes observed in experiment.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brattain, W. H., Rev. Mod. Phys. 23, 203 (1951).CrossRefGoogle Scholar
Meyer, B. K., Polity, A., Reppin, D., Becker, M., Hering, P., Klar, P. J., Sander, Th., Reindl, C., Benz, J., Eickhoff, M., Heiliger, C., Heinemann, M., Bläsing, J., Krost, A., Shokovets, S., Müller, C., Ronning, C., Phys. Status Solidi B 249, 8 (2012).Google Scholar
Balkanski, M., Nusimovici, M., Reydellet, J., Solid State Commun. 7, 815 (1969).CrossRefGoogle Scholar
Carabatos, C. and Prevot, B., Phys. Status Solidi B 44, 701 (1971).CrossRefGoogle Scholar
Huang, K., Zeitschrift für Physik 171, 213 (1963).CrossRefGoogle Scholar
Reydellet, J., Balkanski, M., Trivich, D., Phys. Status Solidi B 52, 175 (1972).CrossRefGoogle Scholar
Compaan, A. and Cummins, H. Z., Phys. Rev. B 6, 4753 (1972).CrossRefGoogle Scholar
Petroff, Y., Yu, P. Y., Shen, Y. R., Phys. Rev. Lett. 29, 1558 (1972).CrossRefGoogle Scholar
Dawson, P., Hargreave, M., Wilkinson, G., J. Phys. Chem. Solids 34, 2201 (1973).CrossRefGoogle Scholar
Williams, P. F. and Porto, S. P. S., Phys. Rev. B 8, 1782 (1973).CrossRefGoogle Scholar
Compaan, A., Solid State Commun. 16, 293 (1975).CrossRefGoogle Scholar
Powell, D., Compaan, A., Macdonald, J. R., Forman, R. A., Phys. Rev. B 12, 20 (1975).CrossRefGoogle Scholar
Reimann, K. and Syassen, K., Phys. Rev. B 39, 11113 (1989).CrossRefGoogle Scholar
Wright, A. F. and Nelson, J. S., J. of Appl. Phys. 92, 5849 (2002).CrossRefGoogle Scholar
Nolan, M. and Elliott, S. D., Phys. Chem. Chem. Phys. 8, 5350 (2006).CrossRefGoogle Scholar
Raebiger, H., Lany, S., Zunger, A., Phys. Rev. B 76, 045209 (2007).CrossRefGoogle Scholar
Scanlon, D. O., Morgan, B. J., Watson, G. W., Walsh, A., Phys. Rev. Lett. 103, 096405 (2009).CrossRefGoogle Scholar