Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-30T21:44:28.406Z Has data issue: false hasContentIssue false

Broad-band, High-efficiency Optical Absorbers Derived From Carbon Nanomaterials

Published online by Cambridge University Press:  28 February 2013

Anupama B. Kaul*
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
James Coles
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Michael Eastwood
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Robert Green
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
Prabhakar Bandaru
Affiliation:
Jacobs School of Engineering, University of California San-Diego, La Jolla, CA 92093, USA
*
*Corresponding Author, Email: anu.kaul@jpl.nasa.gov
Get access

Abstract

Optical absorption efficiency, an important metric for sensing, radiometric and energy harvesting applications, has been studied theoretically and experimentally in porous, ordered nanostructures, including multi-walled- (MW) carbon nanotubes (CNTs) and single-walled- (SW) CNTs. We have characterized the absorption efficiencies in the 350 nm -7000 nm wavelength range of vertically aligned MWCNT arrays with high site densities synthesized directly on metallic substrates using a plasma-enhanced (PE)- chemical vapor deposition (CVD) process. Our ultra-thin absorbers exhibit a reflectance as low as ∼ 0.02 % (100 X lower than the benchmark). Such high efficiency absorbers are particularly attractive for radiometry, as well as energy harnessing applications. This work increases the portfolio of materials that can be integrated with such absorbers due to the potential for reduced synthesis temperatures arising from a plasma process. Optical modeling calculations were conducted that enabled a determination of the extinction coefficient in the films.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

(invited paper)

References

REFERENCES

Huynh, W. U., Dittmer, J. J., and Alivisatos, A. P., Hybrid nanorod-polymer solar cells, Science, vol. 295, Issue 5564, 2002, pp. 24252427.CrossRefGoogle ScholarPubMed
Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., and Geim, A. K., Fine structure constant defines visual transparency of graphene, Science, vol. 320, Issue 5881, 2008, pp. 1308–1308.CrossRefGoogle ScholarPubMed
Yan, X., Cui, X., Li, B., and L-shi Li, Large, solution-processable graphene quantum dots as light absorbers for photovoltaics, Nano Lett. vol. 10, Issue 5, 2010, pp. 18691873.CrossRefGoogle ScholarPubMed
Hu, L. and Chen, G., Nano Lett., vol. 7, Issue 11, 2007, pp. 32493252.CrossRefGoogle Scholar
Tsakalakos, L., Balch, J., Fronheiser, J., Shih, M. –Y, LeBoeuf, S. F., Pietrozykowski, M., Codella, P. J., Sulima, O., Rand, J., Kumar, A. D., and Korevaar, B. A., Strong broadband optical absorption in silicon nanowire films, J. Nanophotonics, vol. 1, 2007, 013552.CrossRefGoogle Scholar
Peng, K., Wu, Y., Fang, H., Zhong, X., Xu, Y., and Zhu, J., Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays, Angew. Chem. Int. Ed., vol. 44, 2005, pp. 27372742.CrossRefGoogle ScholarPubMed
Garcia-Vidal, F. J., Pitarke, J. M., and Pendry, J. B., Effective medium theory of the optical properties of aligned carbon nanotubes, Phys. Rev. Lett. vol. 78, 1997, pp. 42894292.CrossRefGoogle Scholar
Yang, Z-P., Ci, L., Bur, J. A., Lin, S-Y., and Ajayan, P. M., Experimental observation of an extremely dark material made by a low-density nanotube array, Nano Lett. vol. 8, Issue 2, 2008, pp. 446451.CrossRefGoogle ScholarPubMed
Mizuno, K., Ishii, J., Kishida, H., Hayamizu, Y., Yasuda, S., Futaba, D. N., Yumura, M., and Hata, K., A black body absorber from vertically aligned single-walled carbon nanotubes, Proc. Natl. Acad. Sci. U.S.A. vol. 106, Issue 15, 2009, pp. 60446047.CrossRefGoogle ScholarPubMed
Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., and Dai, H., Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, vol. 283, Issue 5401, 1999, pp. 512514.CrossRefGoogle ScholarPubMed
Andrews, R., Jacques, D., Rao, A. M., Derbyshire, F., Qian, D., Fan, X., Dickey, E. C., and Chen, J., Continuous production of aligned carbon nanotubes: a step closer to commercial realization, Chem. Phys. Lett., vol. 303, Issue 5-6, 1999, pp. 467474.CrossRefGoogle Scholar
Advena, D. J., Bly, V. T. and Cox, J. T., Deposition and characterization of far-infrared absorbing gold black films, Appl. Opt., vol. 32, Issue 7, 1993, pp. 11361144.CrossRefGoogle ScholarPubMed
Kodama, S., Horiuchi, M., Kuni, T., and Kuroda, K., Ultra-black nickel-phosphorus alloy optical absorber, IEEE Trans. Inst. and Meas, vol. 39, 1990, pp. 230232.CrossRefGoogle Scholar