Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T14:04:45.200Z Has data issue: false hasContentIssue false

Buffer Gas Effects on the Ablation Rates of Copper Using a Pico-Second Pulsed Nd:YAG Laser

Published online by Cambridge University Press:  01 January 1992

X.L. Mao
Affiliation:
Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
W.T. Chan
Affiliation:
Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
R.E. Russo
Affiliation:
Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
Get access

Abstract

Copper samples were ablated by a pico-second pulsed Nd:YAG laser in Ar and He gases under different pressures. At 1064 nm, the change of ablation rate of copper in He gas from lx10−5 to 760 torr is smaller than that in Ar gas. A model for the development of a plasma above the target surface is presented based on inverse Bremsstrahlung absorption between fast electrons and the gas medium. Ionization rate of the buffer gas versus pressure was estimated using the model, and a good correlation was found with the ablation rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Darke, S.A., Long, S.E., Pickford, C.J., and Tyson, J.F., J. Analyt. Atom. Spectrom. 4, 715 (1989).Google Scholar
2. Denoyer, E.R., Fredeen, K.J., and Hager, J.W., Anal. Chem. 63, 445A (1991).Google Scholar
3. Thompson, M., Goulter, J.E., and Sieper, F., Analyst 106, 32 (1981)Google Scholar
4. Dittrich, K. and Wennrich, R., Prog. Analyt. Atom. Spectrosc. 7, 1939 (1984).Google Scholar
5. Inam, A., Hedge, M.S., Wu, X.D., Venkatesan, T., England, P., Micelli, P.F., Chase, E.S., Chang, C.C., Tarascon, J.M., and Wachtman, J.B., Appl. Phys. Lett. 53, 908 (1988).Google Scholar
6. Watanadri, S., Kwok, H.S., Wang, X.W., Shaw, O.T., Appl. Phys. Lett. 57, 2591 (1990).Google Scholar
7. Mao, X.L., Russo, R.E., Liu, H.B., Ho, J.C., Appl. Phys. Lett. 57, 2591 (1990).Google Scholar
8. Sugioka, K. and Toyoda, K., Jap. J. Appl. Phys. I 29, 2255 (1990).Google Scholar
9. Sternitzke, K.D. and McCreery, R.L., Anal. Chem. 62, 1339 (1990).Google Scholar
10. Anderson, R.R. and Parrish, J.A., Science 220, 524 (1983).Google Scholar
11. Auguste, T., Monot, P., Lompre, L.-A., Mainfray, G., and Manus, C., Optics Commun., 89, 145 (1992).Google Scholar
12. L'huillier, A., Lompre, L.-A., Mainfray, G. and Manus, C., J. Phys. B 16, 835 (1983).Google Scholar
13. Farkas, Gy. and Toth, Cs., Phys. Rev. A 41, 4123 (1990).Google Scholar
14. Moustaizis, S.D., Tatarakis, M., Kalpouzos, C., and Fotakis, C., Appl. Pyhs. Lett. 60, 1939 (1992).Google Scholar
15. Ready, J.F., ‘Effects of High-Power Laser Radiation’, (Academic Press, Inc., New York, 1971), p. 187.Google Scholar
16. Harrach, R.J., ‘Theory for Laser-Induced Breakdown Over a Vaporizing Target Surface’, Report No. UCRL-52389, 1987.Google Scholar
17. Kieffer, L.J., ‘A compilation of electron collision cross section datafor modeling gas dischargelasers’, (Boulder, Colo. : Univ. of Colorado, 1973. Report -Joint Institute for Laboratory Astrophysics, Information Center; no. 13), p. 1.Google Scholar