Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T09:36:42.987Z Has data issue: false hasContentIssue false

Buried Oxide Channel Field Effect Transistor

Published online by Cambridge University Press:  10 February 2011

J.A. Misewich
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598
A.G. Schrott
Affiliation:
IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

A room temperature oxide channel field effect transistor with the channel on the surface was recently demonstrated at IBM which showed switching characteristics similar to conventional silicon FETs. In this paper we introduce a new architecture for the oxide channel transistor where the oxide channel material is buried below the gate oxide layer. This buried channel architecture has several significant advantages over the surface channel design in coupling capacitance, channel mobility, and channel stability. We will discuss the design and fabrication of the buried channel oxide FET and we will present results from these devices which demonstrate a higher transconductance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wong, H.-S.P., Frank, D.J., Solomon, P.M., Wann, C.H.J., and Welser, J.J., Proc. IEEE 87, 537 (1999).Google Scholar
2 Newns, D.M., Misewich, J.A., Tsuei, C.C., Gupta, A., Scott, B.A., and Schrott, A., Appl. Phys.Lett. 73, 780 (1998).Google Scholar
3 Zhou, C., Newns, D.M., Misewich, J.A., and Pattnaik, P., Appl. Phys. Lett. 70, 598 (1997).Google Scholar
4 Doderer, T., Tsuei, C.C., Hwang, W., and Newns, D.M., submitted for publication in Phys. Rev. Lett.Google Scholar
5 Misewich, J.A. and Schrott, A.G., submitted for publication.Google Scholar
6 Mott, N., “Metal-Insulator Transitions”, (Taylor and Francis, London) 1990.Google Scholar
7 Tokura, Y., Physica C 235–240, 138 (1994).Google Scholar
8 Ramakrishnan, T.V., J. Solid State Chem. 111, 4 (1994).Google Scholar
9 Christen, H.-M., Mannhart, J., Williams, E.J., Gerber, Ch., Phys. Rev. B 49, 12095 (1994).Google Scholar
10 Abe, K. and Komatsu, S., Jpn. J. Appl. Phys., Part 2 32, Li 157 (1993).Google Scholar
11 Hirano, T., Ueda, M., Matsui, K., Fujii, T., Sakuta, K., and Kobayashi, T., Jpn. J. Appl. Phys., Part 2 31, L1346 (1992).Google Scholar
12 Mannhart, J., Supercond. Sci. Technol. (UK) 9, (1996) 4967.Google Scholar
13 Levy, A., Falck, J.P., Kastner, M.A., Birgeneau, R.J., and Fiory, A. T., Phys. Rev. B 51, 648 (1995).Google Scholar
14 Fiory, A.T., Hebard, A.F., Eick, R.H., Mankievich, P.M., Howard, R.E., and O'Malley, M.L., Phys. Rev. Lett. 65, 3441 (1990).Google Scholar
15 Talyansky, V., Ogale, S.B., Takeuchi, I., Doughty, C., and Venketesan, T., Phys. Rev. B 53, 14575 (1996).Google Scholar
16 Copel, M., Schrott, A.G., and Misewich, J.A., to be published.Google Scholar
17 Kawaski, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., and Koinuma, H., Science 266, 1540 (1994).Google Scholar
18 Tsuchiya, P., Kawasaki, M., Kubota, H., Nishino, J., Sato, H., Akoh, H., Koinuma, H., Appl. Phys. Lett. 71, 1570 (1997).Google Scholar
19 Jpn. J. Appl. Phys. 37, 5651 (1998).Google Scholar