Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T14:20:06.314Z Has data issue: false hasContentIssue false

Carbon Nanotube Based Electrically Conductive and Optically Transparent Thin Films

Published online by Cambridge University Press:  01 February 2011

Zhongrui Li
Affiliation:
zxli3@ualr.edu, University of Arkansas at Little Rock, Nanotechnology Center, Little Rock, AR, 72204, United States
Enkeleda Dervishi
Affiliation:
exdervishi@ualr.edu, University of Arkansas at Little Rock, Applied Science Department, Little Rock, AR, 72204, United States
Viney Saini
Affiliation:
vxsaini@ualr.edu, University of Arkansas at Little Rock, Applied Science Department, Little Rock, AR, 72204, United States
Alexandru R. Biris
Affiliation:
asbiris@ualr.edu, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, RO-3400, Romania
Dan Lupu
Affiliation:
asbiris@ualr.edu, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, RO-3400, Romania
Yang Xu
Affiliation:
yxxu@ualr.edu, University of Arkansas at Little Rock, Nanotechnology Center, Little Rock, AR, 72204, United States
Alexandru Sorin Biris
Affiliation:
asbiris@ualr.edu, University of Arkansas at Little Rock, Nanotechnology Center, 2801 S. University Ave., ETAS 151, Little Rock, AR, 72204, United States, 501-749-9148, 501-683-7601
Get access

Abstract

Highly electrically conductive and optically transparent thin films were fabricated on conventional glass substrates using different purified carbon nanotubes, single-wall (SWNT), double-wall (DWNT), and multi-wall (MWNT) carbon nanotubes. The starting carbon nanotube materials were first made into homogenous solution with either sodium cholate or dimethylformamide. Two different fabrication approaches, airbrushing and membrane filtration methods, were used and compared. The chemical modification of thionyl chloride was employed to further improve the optical and electric performance of the SWNT films. Additionally, the temperature dependence of the resistance measured on carbon nanotube networks has been investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wu, Z. C., Chen, Z. H., Du, X., Logan, J. M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J. R., Tanner, D. B., Herbard, A. F., and Rinzler, A. G., Science 305, 1273 (2004).Google Scholar
2. Zhang, M., Fang, S. L., Zakhidov, A. A., Lee, S. B., Aliev, A. E., Williams, C. D., Atkinson, K. R., and Baughman, R. H., Science 309, 1215 (2005).Google Scholar
3. Sarah, N., Parikh, K., Suh, D. S., Munoz, E., Kolla, H., and Manohar, S. K., J. Am. Chem. Soc. 126, 4462 (2004).Google Scholar
4. Meitl, M. A., Zhou, Y. X., Gaur, A., Jeon, S., Usrey, M. L., Strano, M. S., and Rogers, J. A., Nano Lett. 4, 1643 (2004).Google Scholar
5. Bekyarova, E., Itkis, M. E., Cabrera, N., Zhao, B., Yu, A. P., Gao, J. B., and Haddon, R. C., J. Am. Chem. Soc. 127, 5990 (2005).Google Scholar
6. Hu, L., Hecht, D. S., and Grüner, G., Nano Lett. 4, 2513 (2004).Google Scholar
7. Armitage, N. P., Gabriel, J. C. P., and Grüner, G., J. Appl. Phys. 95, 3228 (2004).Google Scholar
8. Dervishi, E.1, Li, Z., Biris, A. R., Lupu, D., Pavel, I. E., Trigwell, S., Biris, A. S., Chem. Mater., 19(2), 179184(2007).Google Scholar
9. Wu, Z., Chen, Z., Du, X., Logan, J. M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J. R., Tanner, D. B., Hebard, A. F., and Rinzler, A. G., Science, 305, 1273(2004).Google Scholar
10. Itkis, M. E. et al. , Nano Lett. 2, 155 (2002).Google Scholar
11. Zhang, D., Ryu, K., Liu, X., Polikarpov, E., Ly, J., Tompson, M. E., and Zhou, C., Nano Lett. 6, 1880 (2006).Google Scholar
12. Bachtold, A., Strunk, C., Salvetat, J.P., Bonard, J. M., Forro, L., Nussbaumer, T., and Schonenberger, C., Nature 397, 673(1999).Google Scholar
13. Zhu, H., Zhao, G., Masarapu, C., Young, D. P., and Wei, B., Appl. Phys. Lett. 86, 203107 (2005).Google Scholar
14. Hone, J., Llaguno, M. C., Nemes, N. M., Johnson, A. T., Fischer, J. E., Walters, D. A., Casavant, M. J., Schmidt, J., Smalley, R. E., Appl. Phys. Lett. 77, 666668 (2000).Google Scholar
15. Gruner, G., J. Mater. Chem. 16, 35333539(2006).Google Scholar
16. Delaney, P., Choi, H. J., Ihm, J., Louie, S. G., and Cohen, M. L., Nature (London) 391, 466 (1998).Google Scholar
17. Ouyang, M., Huang, J. L., Cheng, C. L., and Lieber, C. M., Science 292, 702 (2001).Google Scholar
18. Kwon, Y. K., Saito, S., and Tománek, D., Phys. Rev. B 58, R13314 (1998).Google Scholar
19. Kane, C. L. and Mele, E. J., Phys. Rev. Lett. 78, 1932 (1997).Google Scholar
20. Dettlaff-Weglikowska, U., Skakalova, V., Graupner, R., Jhang, S. H., Kim, B. H., Lee, H. J., Ley, L., Park, Y. W., Berber, S., Tomanek, D., and Roth, S., J. Am. Chem. Soc. 127, 5125(2005).Google Scholar
21. Fischer, J. E., Dai, H., Thess, A., Lee, R., Hanjani, N. M., Dehaas, D. L., and Smalley, R. E., Phys. Rev. B 55, R4921 (1997).Google Scholar