Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T08:56:06.479Z Has data issue: false hasContentIssue false

Carbon Nanotubes in Physiological Environment

Published online by Cambridge University Press:  28 November 2012

R. Cué
Affiliation:
Instituto Tecnológico y de Estudios Superiores de Monterrey. Ave. Eugenio Garza Sada 2501 Sur, Col. Tecnológico C.P. 64849, Monterrey, N.L., México.
G. Del Bosque
Affiliation:
Instituto Tecnológico y de Estudios Superiores de Monterrey. Ave. Eugenio Garza Sada 2501 Sur, Col. Tecnológico C.P. 64849, Monterrey, N.L., México.
A. Sanchez
Affiliation:
Instituto Tecnológico y de Estudios Superiores de Monterrey. Ave. Eugenio Garza Sada 2501 Sur, Col. Tecnológico C.P. 64849, Monterrey, N.L., México.
Get access

Abstract

To fully accomplish all promises and hopes on clinical applications of carbon nanotubes, it is crucial to understand their interactions with physiological environment. One of these applications is polymer fillers, and it is important to review the toxicology of carbon nanotubes themselves because some polymer matrices may be biodegradable. Therefore, the interactions with organic molecules such as water, electrolytes, and proteins are reviewed and results of multiple studies on cellular interaction, cytotoxicity, immune response, biodistribution, and biopersistence are further presented. Finally, a section describing the interaction of polymer matrices with carbon nanotube reinforcements and the physiological environment is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berger, Michael. Nano-Society: Pushing the Boundaries of Technology. (Royal Society of Chemistry H. UK, 2009).Google Scholar
Nagarajan, R., Bradley, R., & Nair, B, J. Cemical Physics, 131, 10, 104906 (2009).Google Scholar
Lara, I., Jaques, Y., Fileti, E., & Fagan, S. Encontro da Sociedade Brasileira de Pesquisa em Materiais. Ouro Preto, Brazil. October 2428 (2010).Google Scholar
Sinha, N. & Yeow, J. IEEE Transactions on Nanobioscience, 4, 2, 180195 (2005).CrossRefGoogle Scholar
Lacerda, L., Bianco, A., Prato, M., & Kostarelos, K. Advanced Drug Delivery Reviews, 58, 14, 14601470 (2006).CrossRefGoogle Scholar
Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J., Delos, M., Arras, M., Fonseca, A., Nagy, J., & Lison, D. Toxicology and Applied Pharmacology, 207, 221231, (2005).CrossRefGoogle Scholar
Smart, S., Cassady, A., Lu, G., & Martin, D. Carbon, 44, 10341047 (2006).CrossRefGoogle Scholar
Nel, A., Madler, L., Velegol, D., Xia, T., Hoek, E., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. Nature Materials, 8, 7, 543557 (2009).CrossRefGoogle Scholar
Vossoughi, M., Gojgini, S., Kazemi, A., Alemzadeh, I., & Zeinali, M. Engineering Letters, 17 (4), 12. (2009).Google Scholar
Chlopek, J., Czajkowska, B., Szaraniec, B., Frackowiak, E., Szostak, K., & Béguin, F. Carbon, 44, 11061111. (2006).CrossRefGoogle Scholar
Sinnott, S., & Aluru, N. Carbon Nanotechnology. L. Dai. USA: Elsevier. 447472 (2006).Google Scholar
Sur, U. CURRENT SCIENCE, 82, 6, 618619 (2002).Google Scholar
Etman, M., Rashad, R., & Bedewy, M. International Journal of Nanoscience, 8, 3, 237242 (2009).CrossRefGoogle Scholar
Fornasiero, F., Park, H., Holt, J., Stadermann, M., Kim, S., Bin In, J., Grigoropoulos, C. Noy, A., & Bakajin, O. (LLNL-PROC-402246). NSTI Nanotech 2008. Boston, Massachusetts, USA. June 1-5 (2008).Google Scholar
Wongchoosuk, C., Krongsuk, S., & Kerdcharoen, T. International Journal of Nanoparticles, 1, 2, 136151 (2008).CrossRefGoogle Scholar
Thomas, J., & McGaughey, A. Journal Of Chemical Physics, 128, 8, 27892793 (2008).Google Scholar
Sachdeva, G., Poal, A., Vadassery, N., Kumar, S., Chindada, S., & Giri Rao, H. Presented at CY305 Molecular architecture and evolution of functions. Pradeep Research Group. Indian Institute of Technology Madras. Seminar 2. (2007).Google Scholar
Shiomi, J. & Maruyama, S. Nanotechnology, 20, 5, 055708 (2009).CrossRefGoogle Scholar
Kosmider, M., Sokól, M., Dendzik, Z., & Gburski, Z. Materials Science-Poland, 23, 2, 475481 (2005).Google Scholar
Waghe, A., Rasaiah, J., & Hummer, G. Journal Of Chemical Physics, 117, 23, 1078910795 (2002).CrossRefGoogle Scholar
Hong, H., Zhang, Y., Sun, J., & Cai, W. Nano Today, 4, 5, 399413 (2009).CrossRefGoogle Scholar
Hummer, G., Rasaiah, J., & Noworyta, J. Nature, 414, 6860, 188190 (2001).CrossRefGoogle Scholar
Hurt, R., Monthioux, M., & Kane, A. Carbon, 44, 10281033 (2006).CrossRefGoogle Scholar
Rossi, M. Drexel University, USA. (2006).Google Scholar
Thomas, J. & McGaughey, , NanoLetters, 8, 9, 2788-2793 (2008).CrossRefGoogle Scholar
Kandimalla, V. & Ju, H. Chemistry a European Journal, 12, 10741080 (2006).CrossRefGoogle Scholar
Raffa, V., Ciofani, G., Vittorio, O., Riggio, C., & Cuschieri, A. Physicochemical properties affecting cellular uptake of carbon nanotubes. Nanomedicine, 5, 1, 8997 (2010).CrossRefGoogle ScholarPubMed
Casey, A., Davoren, M., Herzog, E., Lyng, F., Byrne, H., & Chambers, G. Carbon, 45, 3440 (2007).CrossRefGoogle Scholar
Hurt, R., Monthioux, M., & Kane, A. Carbon, 44, 10281033 (2006).CrossRefGoogle Scholar
Chlopek, J., Czajkowska, B., Szaraniec, B., Frackowiak, E., Szostak, K., & Béguin, F. Carbon, 44, 11061111 (2006).CrossRefGoogle Scholar
Dong, L., Witkowski, C., Craig, M., Greenwade, M. & Joseph, K. Nanoscale Research Letters, 4, 15171523 (2009).CrossRefGoogle Scholar
Crosera, M., Bovenzi, M., Maina, G., Adami, G., Zanette, C., Florio, C., & Larese, F. International Archives Of Occupational And Environmental Health, 82, 9, 10431055 (2009).CrossRefGoogle Scholar
Kang, S., Mauter, M., & Elimelech, M. Environmental Science & Technology, 42 (19), 75287534 (2008).CrossRefGoogle Scholar
Aillon, K., Xie, Y., El-Gendy, N., Berkland, C., & Forrest, M. Advanced Drug Delivery Reviews, 61, 6, 457466. (2009).CrossRefGoogle Scholar
Azarmi, S., Roa, W., & Loebenberg, R. Advanced Drug Delivery Reviews, 60 (8), 863875 (2008).CrossRefGoogle Scholar
Liu, Z., Davis, C., Cai, W., He, L., Chen, X., & Dai, H. Proceedings of the National Academy of Sciences of the United States of America, 105, 5, 14101415 (2008).CrossRefGoogle Scholar
Legramante, J., Valentini, F., Magrini, A., Palleschi, G., Sacco, S., Iavicoli, I., Pallante, M., Moscone, D., Galante, A., Bergamaschi, E., Bergamaschi, A., & Pietroiusti, A. Human & Experimental Toxicology, 28, 6, 369375 (2009).CrossRefGoogle Scholar
Fiorito, S., Serafino, A., Andreola, F., & Bernier, P. Carbon, 44, 11001105 (2006).CrossRefGoogle Scholar
Suh, W., Suh, Y., & Stucky, G. Nano Today, 4, 2736 (2008)CrossRefGoogle Scholar
Kostarelos, K. Nature Biotechnology, 26, 7, 774776, (2008).CrossRefGoogle Scholar