Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T10:22:00.674Z Has data issue: false hasContentIssue false

Carrier Dynamics in Poly(Octylthiophene) Gels

Published online by Cambridge University Press:  21 March 2011

J-C Vial
Affiliation:
Lab. de Spectrométrie Physique, UMR C5588 (Univ. J. Fourier-CNRS) BP87, 38402 Saint Martin d'Hères cedex, France
B. Pépin-Donat
Affiliation:
Lab. de physique des métaux synthétiques, UMR 5819 (CNRS-CEA-Univ. J. Fourier) CEA- Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9, France
A. Viallat
Affiliation:
Lab. de Spectrométrie Physique, UMR C5588 (Univ. J. Fourier-CNRS) BP87, 38402 Saint Martin d'Hères cedex, France
P. Fedorko
Affiliation:
Lab. de physique des métaux synthétiques, UMR 5819 (CNRS-CEA-Univ. J. Fourier) CEA- Grenoble, 17 Avenue des Martyrs, 38054 Grenoble Cedex 9, France Slovak University of Technology, 81237 Bratislava, Slovakia.
Get access

Abstract

Carrier dynamics properties in swollen poly(octylthiophene) gels are investigated via their radiative and non-radiative recombination rates (Wr and Wnr respectively) as a function of their swelling ratio (Q). Photoluminescence decay time (τ, in the picosecond range) and luminescence quantum efficiency (QE) are found to strongly increase with Q. This implies that Wr increases and Wnr decreases as Q increases; such a result cannot be understood if one accounts only for the well-known dilution effect observed for organic dyes. Our interpretation is that the enhanced carrier transport due to the increase of interchain interactions observed upon deswelling induces a separation of carriers. Then, these latter present an increased probability to find non-radiative traps. Variation of the conductivity versus Q in doped gels is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burns, P.L. and Holmes, A.B., Nature 347, 539–41 (1990).Google Scholar
2. Pepin-Donat, B., Viallat, A., Rebourt, E. and Bras, J., Synthetic Metals 102, 1506–9 (1999).Google Scholar
3. Rebourt, E., Pépin-Donat, B. and Dinh, E., Polymer 36, 399 (1995).Google Scholar
4. Bras, J., Guillerez, S. and Pepin-Donat, B., Chemistry of Materials 12 (8), 23722384 (2000).Google Scholar
5. Samuel, I.D.W., Rumbles, G., Collison, C.J., Crystall, B., Moratti, S.C. and Holmes, A.B., Synthetic Metals 76, 1518 (1996).Google Scholar