Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T01:50:18.075Z Has data issue: false hasContentIssue false

Carrier Mapping in Thermoelectric Materials

Published online by Cambridge University Press:  05 August 2013

Georgios S. Polymeris
Affiliation:
Physics Department, Aristotle University of Thessaloniki, GR- 54124, Thessaloniki, Greece
Euripides Hatzikraniotis
Affiliation:
Physics Department, Aristotle University of Thessaloniki, GR- 54124, Thessaloniki, Greece
Eleni C. Stefanaki
Affiliation:
Physics Department, Aristotle University of Thessaloniki, GR- 54124, Thessaloniki, Greece
Eleni Pavlidou
Affiliation:
Physics Department, Aristotle University of Thessaloniki, GR- 54124, Thessaloniki, Greece
Theodora Kyratsi
Affiliation:
Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus.
Konstantinos M. Paraskevopoulos
Affiliation:
Physics Department, Aristotle University of Thessaloniki, GR- 54124, Thessaloniki, Greece
Mercouri G. Kanatzidis
Affiliation:
Department of Chemistry, Northwestern University, 2145 North Sheridan Road, Evanston, IL 60208, U.S.A
Get access

Abstract

The application of micro-fourier transform infrared (FTIR) mapping analysis to thermoelectric materials towards identification of doping inhomogeneities is described. Micro-FTIR, in conjunction with fitting, is used as analytical tool for probing carrier content gradients. The plasmon frequency ωP2 was studied as potential effective probe for carrier inhomogeneity and consequently doping differentiation based on its dependence of the carrier concentration. The method was applied to PbTe-, PbSe- and Mg2Si- based thermoelectric materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sales, B. C., Mandrus, D. and Williams, R. K., Science 272, 1325 (1996).CrossRefGoogle Scholar
Chung, D-Y., Hogan, T., Brazis, P., Lane, M. R., Kamewurf, C., Bastea, M., Uher, C. and Kanatzidis, M. G., Science 287, 1024 (2000).CrossRefGoogle Scholar
Peng, H., Song, J-H., Kanatzidis, M.G. and Freeman, A.J., Phys. Rev. B 84, 125207 (2010).CrossRefGoogle Scholar
Biswas, K., He, J. Q., Zhang, Q.C., Wang, G. Y., Uher, C., Dravid, V. P., Kanatzidis, M. G., Nature Chemistry 3, 160 (2011).CrossRefGoogle Scholar
Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., Kanatzidis, M. G., Science 303, 818 (2004).CrossRefGoogle Scholar
Kanatzidis, M. G., Recent Trends in ThermoelectricMaterials Research I 69, 51 (2001).CrossRefGoogle Scholar
Kanatzidis, M. G., Chemistry of Materials 22, 648 (2010).CrossRefGoogle Scholar
Sootsman, J. R., Chung, D. Y., Kanatzidis, M. G., Angewandte Chemie-International Edition, 48, 8616 (2009).CrossRefGoogle Scholar
Fedorov, M.I. and Zaitsev, V.K., in Thermoelectrics and its Energy Harvesting, ed Rowe, D.M., Taylor & Francis, 11–1 (2012)Google Scholar
Caillat, T., Fleurial, J.-P. and Borshchevsky, A., J. Phys. Chem. Solids 58, 1119 (1997).CrossRefGoogle Scholar
Liu, W., Yan, X., Chen, G., Ren, Z., Nano Energy 1, 42 (2012).CrossRefGoogle Scholar
Zebarjadi, M., Joshi, G., Zhu, G.H., Yu, B., Minnich, A., Lan, Y.C., Wang, X.W., Dresselhaus, M., Ren, Z.F., Chen, G., NanoLetters 11, 2225 (2011).CrossRefGoogle Scholar
Goodson, K. E., Flik, M. I., Su, L. T., Antoniadis, D. A., J. Heat Transfer 117, 574 (1996).CrossRefGoogle Scholar
Majumdar, A., Carrejo, J. P., J. Lai, Appl. Phys. Lett. 62, 2501 (1993).CrossRefGoogle Scholar
Boudreau, B. D., Raja, J., Hocken, R. J., Patterson, S. R., J. Patten, Rev. Scie. Instr. 68, 3096 (1997).CrossRefGoogle Scholar
Fletcher, D.A., Kino, D.S., Goodson, K.E., Microscale Thermophysical Engin. 7, 267 (2003).CrossRefGoogle Scholar
Iwanaga, S., Snyder, J.: J. Electr. Mat. 41, 1667 (2012)CrossRefGoogle Scholar
Svechnikova, T. E., Konstantinov, P. P., Zhitinskaya, M. K., Nemov, S. A., Platzek, D. and Muller, E., Proceedings of the 7th European Workshop on Thermoelectrics Spain, (2002)Google Scholar
Platzek, D., Zuber, A., Stiewe, C., Bahr, G., Reinshaus, P. and Muller, E., in Proc. Int. Conf. on Thermoelectrics, La Grade-Motte, France, 2003, IEEE, Piscataway, NJ 08855, USA, 528 . Google Scholar
Ni, H.L., Zhao, X.B., Kaprinski, G., Muller, E.: Journal of Materials Science 40, 605 (2005)CrossRefGoogle Scholar
Kosuga, A., Kurosaki, K., Muta, H., Stiewe, C., Kaprinski, G., Muller, E., Yamanaka, S.: Materials Transactions 47, 1440 (2006).CrossRefGoogle Scholar
Chasapis, Th.C., Lee, Y., Polymeris, G.S., Stefanaki, E-C., Hatzikraniotis, E., Zhou, X., Uher, C., Paraskevopoulos, K.M., Kanatzidis, M.G.: MRS Proceedings, 1490 DOI: http://dx.doi.org/10.1557/opl.2013.150 (2013).CrossRefGoogle Scholar
Ioannou, M., Polymeris, G., Hatzikraniotis, E., Khan, A.U., Paraskevopoulos, K.M., Kyratsi, Th., Journal of Electronic Materials, DOI: 10.1007/s11664-012-2442-6 (2013).Google Scholar