Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T10:13:50.079Z Has data issue: false hasContentIssue false

Catalysts Examined by Electron Spin Resonance-Examples from Hydrodesulfurization Catalysis

Published online by Cambridge University Press:  15 February 2011

Bernard G. Silbernagel*
Affiliation:
Corporate Research-Science Laboratories, Exxon Research and Engineering Co., Linden, New Jersey 07036
Get access

Abstract

The utility of electron spin resonance (ESR) for catalyst characterization is illustrated for the desulfurization catalysts used to remove sulfur, nitrogen, and organically bound metals from petroleum. These catalysts consist of active metals (Mo, W, Co, Ni) in mixed oxide and sulfide phases on high surface area alumina supports. Coordinated studies of unsupported sulfide and oxide model systems determine the chemical form and number of defect sites on the actual catalysts. Parallel catalysis studies correlate ESR defects and catalytic activity for many reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Satterfield, C. N., Heterogeneous Catalysis in Practice (McGraw-Hill, 1980). Ch. 1.Google Scholar
2. Sie, S., in Catalyst Deactivation, Vol. 6, Delmon, B. and Froment, G., eds. (Elsevier, 1980) p. 556.Google Scholar
3. Weisser, O. and Landa, S., Sulfide Catalysts, Their Properties and Applications (Pergamon, New York 1973).Google Scholar
4. Wilson, J. and Yoffee, A. B., Adv. Phys. 18, 193 (1969).CrossRefGoogle Scholar
5. Voorhoeve, R. J. H. and Wolters, H. B. M., Z. anorg. u. allgem. Chemie 376, 165 (1970).CrossRefGoogle Scholar
6. Gazzinelli, R. and Schirmer, O. F., J. Phys. C. 10, L145 (1977).CrossRefGoogle Scholar
7. Davison, A., Edelstein, N., Holm, R. H. and Maki, A. K., J. Amer. Chem. Soc. 86, 2799 (1964).CrossRefGoogle Scholar
8. Stieffel, E. I., Eisenberg, R., Rosenberg, R. S. and Gray, H. B., J. Amer. Chem. Soc. 88, 2956 (1966).CrossRefGoogle Scholar
9. Voorhoeve, R. J. H., J. Catalysis 23, 236 (1971).CrossRefGoogle Scholar
10. Hagenbach, G., Menguy, P. and Delmon, B., Bull. Soc. Chim. Belg. 83, 1 (1974).CrossRefGoogle Scholar
11. Juryska, R. and Bill, H., Nuovo Cimento 38B, 369 (1977).CrossRefGoogle Scholar
12. Seghadri, K. S., Massoth, F. G., Petrakis, L., J. Catalysis 19, 95 (1970).CrossRefGoogle Scholar
13. Martini, G., J. Magnetic Resonance 15, 262 (1974).Google Scholar
14. Lojacona, M., Verbeek, J. L. and chuit, G. C. A., Proc. 5th. Int. Cong. Catalysis, (Elsevier, 1973), v. 2 p. 409 ft.Google Scholar
15. Galiasso, R. and Menguy, P., Bull. Soc. Chim. France 4, 1331, (1972).Google Scholar
16. Ueda, H. and Todo, N., J. Catalysis 27, 281 (1972).CrossRefGoogle Scholar
17. Zverev, G. M. and Prokhorov, A. M., Zh. Eksp. Teoret. Fig. 36, 647 (1959).Google Scholar
18. Silbernagel, B. G., J. Catalysis 56, 315 (1979).CrossRefGoogle Scholar
19. Silbernagel, B. G. and Riley, K. L., in Catalyst Deactivation Vol. 6, Delmon, B. and Froment, G., eds. (Elsevier, 1980) p. 313.CrossRefGoogle Scholar