Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-20T09:23:11.433Z Has data issue: false hasContentIssue false

CBD-In(OH)xSy Thin Films: An Approach to the Growth Mechanism

Published online by Cambridge University Press:  21 March 2011

Rocío Bayón
Affiliation:
Departamento de Energías Renovables. (CIEMAT) Avd. Complutense 22, E-28040 Madrid (Spain) Electronic mail:rocio.bayon@ciemat.es
José Herrero
Affiliation:
Departamento de Energías Renovables. (CIEMAT) Avd. Complutense 22, E-28040 Madrid (Spain)
Get access

Abstract

The surface morphology of chemical bath deposited In(OH)xSy thin films has been studied using SEM and TEM. Different surface morphologies have been obtained depending on the deposition conditions (reactant concentrations, pH and bath temperature) as a consequence of the variation of both the homogeneous nucleation and particle-growth rates with them. The In(OH)3 colloids present in the bulk solution and on the substrate surface play an important role in the growth mechanism since they promote the In(OH)xSy formation. It has been found that the growth mechanism of the films is the socalled particle-by-particle or colloidal growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bayón, R., Guillén, C., Martínez, M. A., Gutiérrez, M. T. and Herrero, J., J. Electrochem. Soc. 145 (8) (1998) 2775.Google Scholar
2. Bayón, R., Maffiotte, C. and Herrero, J., Thin Solid Films 353 (1999) 100.Google Scholar
3. Bayón, R. and Herrero, J., Applied Surface Science 158 (2000) 49.Google Scholar
4. Bayón, R. and Herrero, J., Thin Solid Films 387 (2001) 111.Google Scholar
5. Yoshida, T., Yamaguchi, K., Toyoda, H., Akao, K., Sugiura, T., Minoura, H. and Nosaka, Y., Electrochem. Soc. Proc., 97–20 (1997) 37.Google Scholar
6. Kainthla, R. C., Pandya, D. K. and Chopra, K. L., J. Electrochem. Soc. 127 (1980) 277.Google Scholar
7. Meldrum, F. C., Flath, J. and Knoll, W., J. Mater. Chem. 9 (1999) 711.Google Scholar
8. Gorer, S. and Hodes, G., J. Phys. Chem. 98 (1994) 5338.Google Scholar
9. Kaufmann, C., Dobson, P. J., Neve, S., Bohne, W., Klaer, J., Klenk, R., Pettenkofer, C., Röhrich, J., Scheer, R. and Störkel, U., 28th IEEE Pholtovoltaic Specialists Conference, Anchorage 2000.Google Scholar
10. Kaufmann, C., Bayón, R., Bohne, W., Röhrich, J., Klenk, R. and Dobson, P. J., Submitted to J. Electrochem. Soc.Google Scholar
11. Eshuis, A. and Koning, C. A. J., Colloid. Polym. Sci. 272 (1994) 1240.Google Scholar
12. Eshuis, A., Elderen, G. R. A. van and Koning, C. A. J., Colloids and Surfaces A: Physicochemical and Engineering Aspects 151 (1999) 505.Google Scholar
13. Peeters, O. M. and Ranter, C. J. de, J. Dhem. Soc. Perkin II (1974) 1832.Google Scholar