Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T14:57:51.308Z Has data issue: false hasContentIssue false

CdS and Cd-Free Buffer Layers on Solution Phase Grown Cu2ZnSn(SxSe1- x)4 :Band Alignments and Electronic Structure Determined with Femtosecond Ultraviolet Photoelectron Spectroscopy

Published online by Cambridge University Press:  13 February 2014

Richard Haight
Affiliation:
IBM TJ Watson Research Center, PO Box 218, Yorktown Hts., NY 10598
Aaron Barkhouse
Affiliation:
IBM TJ Watson Research Center, PO Box 218, Yorktown Hts., NY 10598
Wei Wang
Affiliation:
IBM TJ Watson Research Center, PO Box 218, Yorktown Hts., NY 10598
Yu Luo
Affiliation:
IBM TJ Watson Research Center, PO Box 218, Yorktown Hts., NY 10598
Xiaoyan Shao
Affiliation:
IBM TJ Watson Research Center, PO Box 218, Yorktown Hts., NY 10598
David B. Mitzi
Affiliation:
IBM TJ Watson Research Center, PO Box 218, Yorktown Hts., NY 10598
Homare Hiroi
Affiliation:
Atsugi Research Center, Solar Frontier K.K., Atsugi, Kanagawa 243-0206, Japan
Hiroki Sugimoto
Affiliation:
Atsugi Research Center, Solar Frontier K.K., Atsugi, Kanagawa 243-0206, Japan
Get access

Abstract

The heterojunctions formed between solution phase grown Cu2ZnSn(SxSe1- x)4 (CZTS,Se) and a number of important buffer materials including CdS, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission spectroscopy (fs-UPS) and photovoltage spectroscopy. With this approach we extract the magnitude and direction of the CZTS,Se band bending, locate the Fermi level within the band gaps of absorber and buffer and measure the absorber/buffer band offsets under flatband conditions. We will also discuss two-color pump/probe experiments in which the band bending in the buffer layer can be independently determined. Finally, studies of the bare CZTS,Se surface will be discussed including our observation of mid-gap Fermi level pinning and its relation to Voc limitations and bulk defects.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Minemoto, T., Matsui, T., Takakura, H., Hamakawa, Y., Negami, T., Hashimoto, Y., Uenoyama, T., Kitagaw, M., Sol. Energy Mater. Sol. Cells 67, 83 (2001).CrossRefGoogle Scholar
Chirila, A., Reinhard, P., Pianezzi, F., Bloesch, P., Uhl, A.R., Fella, C., Kranz, L., Keller, D., Gretener, C., Hagendorfer, H. , Jaeger, D., Erni, R., Nishiwaki, S., Buecheler, S., Tiwari, A. N., DOI:10.1038/NMAT3789 CrossRefGoogle Scholar
Winkler, M. T., Wang, W., Gunawan, O., Hovel, H. J., Todorov, T. K., Mitzi, D. B., Energy Environ. Sci., DOI:10.1039/C3EE42541J CrossRefGoogle Scholar
Haight, R., Barkhouse, D.A.R., Gunawan, O., Shin, B., Copel, M., Hopstaken, M., Mitzi, D.B., App. Phys. Lett, 98, 253502 (2011)CrossRefGoogle Scholar
Barkhouse, D.A.R., Haight, R., Sakai, N., Hiroi, H., Sugimoto, H., Mitzi, D.B., App. Phys. Lett. 100, 193904 (2012)CrossRefGoogle Scholar
Du, H., Romero, J., Repins, I., Teeter, G., Noufi, R., Al-Jassim, M.M., 37th IEEE Photovoltaic Specialist Conference (PVSC37), June 19 (2011)Google Scholar
Li, J., Wei, M., Du, Q., Liu, W., Jiang, G., Zhu, C. DOI:10.1002/sia.5295 (2012)CrossRefGoogle Scholar
Bär, M., Schubert, B.-A., Marsen, B., Wilks, R. G., Pookpanratana, S., Blum, M., Krause, S., Unold, T., Yang, W., Weinhardt, L., Heske, C., Schock App, H.-W.. Phys. Lett. 99, 222105 (2011)Google Scholar
Barkhouse, D.A.R., Gunawan, O., Gokmen, T., Todorov, T.K., Mitzi, D.B., Prog. Photovolt: Res. Appl. 2012; 20:611, DOI: 10.1002/pip.1160 CrossRefGoogle Scholar
Haight, R., Shao, X., Wang, W., Mitzi, D.B., App. Phys. Lett. submittedGoogle Scholar
Gokmen, T., Gunawan, O., Todorov, T.K., Mitzi, D.B., App. Phys. Lett. 103, 103506 (2013)CrossRefGoogle Scholar