Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T20:27:35.543Z Has data issue: false hasContentIssue false

Ce Doped-GeSbTe Thin Films Applied to Phase-change Random Access Memory Devices

Published online by Cambridge University Press:  01 February 2011

Yu-Jen Huang
Affiliation:
n9118821@yahoo.com.twn9118821@gmail.com, National Chiao Tung University, Materials Science and Engineering, Hsinchu, Taiwan, Province of China
Min-Chuan Tsai
Affiliation:
m67356@hotmail.com, National Chiao Tung University, Materials Science and Engineering, Hsinchu, Taiwan, Province of China
Chiung-Hsin Wang
Affiliation:
baziowang@gmail.com, National Chiao Tung University, Materials Science and Engineering, Hsinchu, Taiwan, Province of China
Tsung-Eong Hsieh
Affiliation:
tehsieh@mail.nctu.edu.twtehsieh@cc.nctu.edu.tw, National Chiao Tung University, Materials Science and Engineering, Hsinchu, Taiwan, Province of China
Get access

Abstract

A study on microstructure and electrical property of cerium (Ce)-doped Ge2Sb2Te5 (GST) layers for phase-change memory (PCM) application were presented. Ce doping does not suppress the resistivity of amorphous GST and the resistivity ratio of amorphous and crystalline GST remains at about 105. Further, Ce-doping escalates the recrystallization temperature (Tx) of GST from 159 to 236°C. Such a unique behavior would greatly benefit the preservation of signal contrast as well as the high-density signal storage and will not cause the increase of device writing current. X-ray diffraction (XRD) indicated that Ce doping stabilizes amorphous GST and suppresses the formation of hexagonal phase. Transmission electron microscopy (TEM) revealed Ce doping refines the grain size of GST. Kissinger's analysis found that Tx and activation energy (Ea) of phase transition for doped-GST both increase with the increase of Ce content. Isothermal experiment found the Ce doping increases temperature for 10-yr data retention from 76 and 170°C. This is attributed to the presence of Ce solutes in GST matrix that inhibits the grain growth during recrystallization.

Static-mode electrical test on PCM device containing doped GST as the programming layer found that Ce incorporation indeed increases the switching threshold voltage (Vth). This confirmed that Ce doping effectively retards the crystallization of GST and improves the stability of amorphous GST.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lai, S. and Lowrey, T. Tech. Dig. - Int. Electron Devices Meet. 2001, p. 803.Google Scholar
2 Pirovano, A. Lacaita, A. L. Benvenuti, A. Pellizzer, F. Hudgens, S. and Bez, R. Tech. Dig. - Int. Electron Devices Meet. 2003, p. 699.Google Scholar
3 Lai, Y. Qiao, B. Feng, J. Ling, Y. Lai, L. Lin, Y. Tang, T. Cai, B. and Chen, B. J. Electron. Mater. 34, 176 (2005).Google Scholar
4 Kim, Y. K. Baeck, J. H. Cho, M.-H. Jeong, E. J. and D.-Ko, H. J. Appl. Phys. 100, 083502 (2006).Google Scholar
5 Matsuzaki, N. Kurotsuchi, K. Matsui, Y. Tonomura, O. Yamamoto, N. Fujisaki, Y. Kitai, N. Takemura, R. Osada, K. Hanzawa, S. Moriya, H. Iwasaki, T. Kawahara, T. Takaura, N. Terao, M., Matsuoka, M. and Moniwa, M. Tech. Dig. - Int. Electron Devices Meet. 2005, p. 738.Google Scholar
6 Ryu, S.W. Oh, J.H. Lee, J.H. Choi, B.J. Kim, W. Hong, S.K. Hwang, C.S. and Kim, H.J. Appl. Phys. Lett. 92, 142110 (2008).Google Scholar
7 Qiao, B. Feng, J. Lai, Y. Ling, Y. Lin, Y. Tang, T. Cai, B. and Chen, B. Appl. Surf. Sci. 252, 8404 (2006).Google Scholar
8 Huang, Y.J. Chen, Y.C. and Hsieh, T.E. J. Appl. Phys. 106, 034916 (2009).Google Scholar
9 Song, W.D. Shi, L.P. Miao, X.S. and Chong, T.C. Appl. Phys. Lett. 90, 091904 (2007).Google Scholar
10 Lie, C. T. Kuo, P. C. Hsu, W. C. Wu, T. H. Chen, P. W. and Chen, S. C. Jpn. J. Appl. Phys. 42, 1026 (2003).Google Scholar
11 Men, Liqiu, Tominaga, Junji, Fuji, Hiroshi, Kikukawa, Takashi, and Atoda, Nobufumi, Jpn. J. Appl. Phys. Part 1 40, 1629 (2001).Google Scholar
12 Kissinger, H. E. Anal. Chem. 29, 1702 (1957).Google Scholar
13 Reed-Hill, R. E. and Abbaschian, R. Physical Metallurgy Principles, 3rd ed. (PWS, Boston, 1992), p. 241.Google Scholar
14 Karpov, V.G. and Kryukov, Y.A. Savransky, S.D. and Karpov, I.V. Appl. Phys. Lett. 90, 123504 (2007).Google Scholar