Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T10:06:43.709Z Has data issue: false hasContentIssue false

CeO2 thin film for mediator-less glucose biosensors

Published online by Cambridge University Press:  01 February 2011

Shibu Saha
Affiliation:
shibuss84@gmail.com, United States
S. K. Arya
Affiliation:
sunilarya333@gmail.com, National Physical Laboratory, Delhi, Delhi, India
S. P. Singh
Affiliation:
singh@uorm.edu, University of PuertoRico, Mayaguez, Puerto Rico
B. D. Malhotra
Affiliation:
bansi.malhota@gmail.com, National Physical Laboratory, Delhi, Delhi, India
K. Sreenivas
Affiliation:
kondepuddysreenivas@rediffmail.com, University of Delhi, Delhi, India
Vinay Gupta
Affiliation:
vgupta@physics.du.ac.in, University of Delhi, Delhi, India
Get access

Abstract

Pulsed laser deposited cerium oxide (CeO2) nanoporous thin film on platinum (Pt) coated glass has been used for immobilization of glucose oxidase (GOx) by electrostatic interaction. Atomic force microscopy studies reveal the formation of nanoporous surface morphology of CeO2 thin film. Differential pulse voltammetric and optical measurements show that the GOx/CeO2/Pt bioelectrode is sensitive to the detection of glucose over the concentration upto 300 mg/dl. A low value of enzyme's kinetic parameter (Michaelis-Menten constant∼1.01 mM) indicates enhanced enzyme affinity of GOx to glucose.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reference:

1. Wei, A., Sun, X.W., Wang, J.X., Lei, Y., Cai, X.P., Li, C.M., Dong, Z.L. and Huang, W. Appl. Phys.Lett. 89, 123902 (2006).Google Scholar
2. Singh, S.P., Arya, S.K., Pandey, P., Malhotra, B.D., Saha, S., Sreenivas, K. and Gupta, V. Appl. Phys.Lett. 91, 063901 (2007).Google Scholar
3. Ekanayake, E.M.I.M., Preethichandra, D.M.G. and Kaneto, K., Biosensors & Bioelectronics 23, 107(2007).Google Scholar
4. Matharu, Z., Sumana, G., Arya, S.K., Singh, S.P., Gupta, V. and Malhotra, B.D., Langmuir 23, 13188 (2007).Google Scholar
5. Kouassi, G.K., Irudayaraj, J., McCarty, G., J.Nanobiotechnology 3, 1 (2005).Google Scholar
6. Pandey, P., Singh, S.P., Arya, S.K., Gupta, V., Datta, M., Singh, S. and Malhotra, B.D., Langmuir. 23, 3333 (2007).Google Scholar
7. Rodriguez, J.A., Ma, S., Liu, P., Hrbek, J., Evans, J. and Perez, M., Science 318, 1757 (2007).Google Scholar
8. Andersson, D.A., Simak, S.I., Skorodumova, N.V., Abrikosov, I.A. and Johansson, B., Appl.Phys.Lett. 90, 031909 (2007)Google Scholar
9. Lee, T.W., Paik, U., Choi, S., Lee, S.H., Lim, H.S. and Kim, C.J., J.Kor.Phys.Soc. 37, 721 (2000).Google Scholar
10. Suzuki, T., Kosacki, I. and Anderson, H.U., J.Am.Ceram.Soc. 85, 1492 (2002).Google Scholar
11. Corma, A., Atienzar, P., Garcia, H. and Ching, J.Y.C., Nat.Mat. 3, 394(2004).Google Scholar
12. Goubin, F., Rocquefelte, X., Whangbo, M.H., Montardi, Y., Brec, R. and Jobic, S., Chem.Mater. 16, 662 (2004).Google Scholar
13. Gerblinger, J., Lohwasser, W., Lampe, U. and Meixner, H., Sens.Act.B 26–27, 93 (1995).Google Scholar
14. Avellaneda, C.O., Berton, M.A.C. and Bulhões, L.O.S., Sol. Energy Mater. Sol. Cells (2007), doi:10.1016/j.solmat.2007.03.035.Google Scholar
15. Patsalas, P., Logothetidis, S. and Metaxa, C., App.Phys.Lett. 81, 466 (2002).Google Scholar
16. Miaoa, J.J., Wanga, H., Lia, Y.R., Zhub, J.M. and Zhu, J.J., J. Crystal Growth 281, 525 (2005).Google Scholar
17. Walker, J.M., Principles, Techniques of practical biochemistry, Wilson, K., Walker, J. (Eds.), Cambridge University press (2000), 5th edition UK.Google Scholar