Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T17:34:51.815Z Has data issue: false hasContentIssue false

Cerium Containing Chalcogenides with Chromatic Properties

Published online by Cambridge University Press:  15 February 2011

G. Gauthier
Affiliation:
Institut des Matériaux de Nantes, Laboratoire de Chimie des Solides, 2 rue de ]a Houssinière, BP 32229, 44322 Nantes Cedex 03, France
S. Jobic
Affiliation:
Institut des Matériaux de Nantes, Laboratoire de Chimie des Solides, 2 rue de ]a Houssinière, BP 32229, 44322 Nantes Cedex 03, France
P. Macaujdiere
Affiliation:
Centre de Recherches de Rhodia, 52 rue de la Haie Coq, 93308 Aubervilliers Cedex, France
R. Brec
Affiliation:
Institut des Matériaux de Nantes, Laboratoire de Chimie des Solides, 2 rue de ]a Houssinière, BP 32229, 44322 Nantes Cedex 03, France
Get access

Abstract

λ–Ce2S3, like many other cerium containing chalcogenides, presents a strong absorption in the visible spectra in relation with the CeIII-4fl → CeIII-5d1 electronic transition taking place at around 1.9 eV. This transition energy, that induces a red hue for the phase, can be increased by changing the nature of the Ce-S bonding, in particular through an enhancement of its ionicity. This can be made by inserting/substituting some alkali metal ions in the structure of λ-Ce2S3. The sodium-doped λ-Na3/8Ce15/2S3 phase for instance undergoes a CeIII-4f1 → Cemi-5d1 transition energy increase of 0.12 eV. This shift is sufficient to modify substantially the pigment properties of the material and it has been mainly related to the narrowing of the electronic bands. In CePS4, Ce2SiS5, Ce4Si3S12and Ce6Si4S17, strong covalent bondings enhance the ionic Ce-S bond through inductive effect, leading to a CeIII-4f1 → CeIII-5d1 electronic transition in the blue (Eg - 2.5 eV) hence the yellow hue of these materials. Within the Ce-Si-S family, small differences may be attributed to difference in the [CeSx] and [SiS4] polyhedra bonding. The Ce3(TS4 )2X family (X = Cl, Br, I, T = Si, Ge) does not show pigment properties because of the Ce-X bond inducing a more Ce-S ionic character (in particular when X = Br, I) and thus a higher gap that is found in the near ultraviolet. On the other hand, the phases present an important room temperature blue fluorescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maestro, P., E.P. Patent No. 0203838 (30/04/1985).Google Scholar
2. Chopin, T., Guichon, H. and Touret, O., E.P. Patent No. 545746 (04/12/1991).Google Scholar
3. Macaudière, P., E.P. Patent No. 680930 (06/05/1995).Google Scholar
4. Maestro, P. and Huguenin, D., J. Alloys Comp. 225, pp. 520528 (1995).Google Scholar
5. Vasilyeva, I.G., Ayupov, B.M., Vlasov, A.A., Malakhov, V.V., Macaudière, P. and Maestro, P., J. Alloys Comp. 268, pp. 7277 (1998).Google Scholar
6. Mauricot, R., Evain, M., Gressier, P. and Brec, R., J. Alloys Comp. 223, pp. 130138 (1995).Google Scholar
7. Zhukov, V., Mauricot, R., Gressier, P. and Evain, M., J. Solid State Chem. 128, pp. 197204 (1997).Google Scholar
8. Mauricot, R., Ph. D., 1995, Nantes, France.Google Scholar
9. Perrin, M.A. and Wimmer, E., Phys. Rev. B 54, p. 2428 (1996).Google Scholar
10. March, J., Advanced Organic Chemistry, 3rd ed., John Wiley, New York, 1985.Google Scholar
11. Noll, W., Angew. Chem., Int. Ed. Engl. 2, p. 73 (1963).Google Scholar
12. Shannon, R.D., Chem. Commun., p. 881 (1971).Google Scholar
13. Etourneau, J., Portier, J. and Ménil, F., J. Alloys Comp. 188, pp. 17 (1992).Google Scholar
14. Gauthier, G., Jobic, S., Boucher, F., Macaudière, P., Huguenin, D., Rouxel, J., and Brec, R., Chem. Mater. 10, pp. 23412347 (1998).Google Scholar
15. Gauthier, G., Guillen, F., Jobic, S., Richter, K.W., Flandorfer, H., Huguenin, D., Macaudière, P., Fouassier, C., Ipser, H., and Brec, R., Chem. Eur. J., to be submitted.Google Scholar
16. Gauthier, G., Kawasaki, S., Jobic, S., Macaudière, P., Brec, R. and Rouxel, J., J. Mater. Chem. 8(1), pp. 179186 (1998).Google Scholar
17. Riccardi, R., Gout, D., Gauthier, G., Guillen, F., Jobic, S., Garcia, A., Huguenin, D., Macaudière, P., Fouassier, C. and Brec, R., J. Solid State Chem., to be submitted.Google Scholar
18. Flahaut, J., in Handbook on the Physics and Chemistry of Rare-Earths, ed. Gschneider, K.A. and Eyring, L., North-Holland, Amsterdam, 1979, vol. 4, p. 1, and references therein.Google Scholar
19. Guittard, M. and Flahaut, J., in Synthesis of Lanthanide and Actinide Compounds, edited by Meyer, G. and Morss, L.R., Kluwer Academic, Dordrecht, 1991, p. 321, and references therein.Google Scholar
20. Besancon, P. and Laruelle, P., Acad, C. R.. Sci. Paris, Ser. C 268, p. 48 (1969).Google Scholar
21. Besancon, P., J. Solid State Chem. 7, p. 232 (1973).Google Scholar
22. Carre, D., Laruelle, P., and Besancon, P., Acad, C. R.. Sci. Paris, Ser. C 270, pp. 537 (1970).Google Scholar
23. Schleid, T. and Lissner, F., J. Less-Common Met. 175, p. 309 (1991).Google Scholar
24. Zachariasen, W.H., Acta Crystallogr. 2, p. 57 (1949).Google Scholar
25. Carter, F.L., J. Solid State Chem. 5, p. 300 (1972).Google Scholar
26. Dagys, R. and Babonas, G.-J., J. Solid State Chem. 109, p. 30 (1994).Google Scholar
27. Babonas, G.-J., Dagys, R. and Pukinskas, G., Phys. Status Solidi B 153, p. 741 (1989).Google Scholar
28. Babonas, G.-J., Dagys, R. and Pukinskas, G., Phys. Rev. B 51, p. 6995 (1995).Google Scholar
29. Huang, Z., Cajipe, V.B., Rolland, B. Le and Colombet, P., Schipper, W.J. and Blasse, G., Eur. J. Solid State Inorg. Chem. 29, p. 1133 (1992).Google Scholar
30. Wendlandt, W.W. and Hecht, H.G., Reflectance Spectroscopy, Interscience Publishers, New York, 1995.Google Scholar
31. Korturm, G., Reflectance Spectroscopy, Springer-Verlag, New York, 1969.Google Scholar
32. Tandon, S.P. and Gupta, J.P., Phys. Status Solidi 38, pp. 363367 (1970).Google Scholar
33. Beck, A. D., Edgecombe, K. E. J. Chem. Phys. 92, p. 5397 (1990).Google Scholar
34. Lennard-Jones, J. E., J. Chem. Phys. 20, p. 1024 (1952).Google Scholar
35. Michelet, A., Perez, G., Darriet-Duale, M. et Etienne, J., Acad, C. R.. Sc. Paris C271, pp. 513515 (1970).Google Scholar
36. Perez, G., Duale, M., Acad, C. R.. Sc. Paris C269, pp. 984986 (1969).Google Scholar
37. Perez, G., Duale, M., Acad, C. R.. Sc. Paris C269, pp. 984986 (1969).Google Scholar
38. Yamada, H., Kano, T. and Tanabe, M., Mater. Res. Bull. 13, p. 101 (1978).Google Scholar
39. Lehmann, W. and Isaacs, T.J., J. Electrochem. Soc. 125(3), p. 445 (1978).Google Scholar
40. Es-Sakhi, B., Fouassier, C. and Moudden, A., Ann. Chim. Sci. Mat. 22, p. 281 (1997).Google Scholar
41. Blasse, G. and Grabmaier, B.C., in Luminescent Materials, Springer-Verlag, Berlin Heidelberg New York, 1994, p.45, and references therein.Google Scholar
42. Harkonen, G., Leppainen, M., Soininen, E., Trmqvist, R. and Viljanen, J., J. All. Comp. 225, p. 552 (1995).Google Scholar
43. Sun, S.S., Tuenge, R.T., Kane, J. and Ling, M., J. Electrochem. Soc. 141, p. 2877 (1994).Google Scholar