Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:16:32.392Z Has data issue: false hasContentIssue false

Chalcogen Nanowires: Synthesis and Properties

Published online by Cambridge University Press:  15 February 2011

Brian T. Mayers
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA., xia@chem.washington.edu
Younan Xia
Affiliation:
Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA., xia@chem.washington.edu
Get access

Abstract

We have demonstrated a variety of solution-phase approaches for the synthesis of 1- dimensional nanostructures from chalcogens such as Se and Te. These nanostructures include uniform, single crystalline nanowires and nanorods (lateral dimensions from 10 to 1000 nm, and lengths ranging from 2 to >100 νm). These nanostructures grew via a solid-solution-solid transformation mechanism, in which Se and Te atoms were transported from the less stable source (amorphous colloids) into the more stable product (trigonal phase nanocrystallites). The nanocrystallites (or seeds) were formed either through temperature driven homogeneous nucleation or by sonochemical cavitation. As directed by the highly anisotropic crystal structure, the growth could be confined to one particular direction. These nanowires could be prepared both as dispersions in various solvents or as networked arrays on solid supports.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.(a) Huang, H.M., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., Science, 292, p. 1897 (2001). (b) X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, p. 66 (2001).Google Scholar
2. Xia, Y., Rogers, J. A., Paul, K., and Whitesides, G. M., Chem. Rev. 99, p. 1823 (1999).Google Scholar
3. Gigargizov, E. I., Highly Anisotropic Crystals, Reidel, Dordrecht, The Netherlands (1987).Google Scholar
4.(a) Chopra, N.G., Luyken, R. J., Cherrey, K., Crespi, V. H., Cohen, M. L., Louie, S.G., and Zettl, A., Science 269, p. 966 (1995). (b) J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and H. Dai, Nature 385, p. 878 (1998).Google Scholar
5.(a) Duan, X., and Lieber, C. M., Adv. Mater. 12, p. 298 (2000). (b) S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, MRS Bull., 24(8), p. 36 (1999). (c)Y. Y.Wu, and P. D. Yang, Chem. Mater. 12, 605 (2000). (d) Z. W. Pan, Z. R. Dai, and Z. L.Wang, Science 291, p. 1947 (2001).Google Scholar
6.(a) Yazawa, M., Koguchi, M., Muto, A., Hiruma, K., Adv. Mater. 5, p. 577 (1993). (b) R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4, p. 89 (1964). (c) E. I. Givargizov, J. Vac. Sci. Technol. B 11, 449 (1993).Google Scholar
7.(a) Trentler, T. J., Hickman, K.M., Goel, S. C., Viano, A. M., Gibbons, P. C., and Buhro, W. E., Science 270, pp. 17911794 (1995). (b) Y. Xie, P. Yang, J. Lu, W. Wang, and Y.Qian, Chem. Mater. 11, pp. 2619-2622 (1999). (c) J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Science 287, pp. 1471-1473 (2000).Google Scholar
8.(a) Martin, B. R., Dermody, D. J., Reiss, B. D., Fang, M., Lyon, L. A., Natan, M. J., and Mallouk, T. E., Adv. Mater. 11, p. 1021 (1999). (b) M. J. Edmondson, W. Zhou, S. A. Sieber, I. P. Jones, I. Gameson, P. A. Anderson, and P. P. Edwards, Adv. Mater. 13, p. 1608 (2001). (c) T. Thurn-Albrecht, J. Schotter, G. A. Kästle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell, Science 290, 2126-2129 (2000).Google Scholar
9.(a) Gates, B., Mayers, B., Cattle, B., and Xia, Y., Adv. Func. Mater. 12, 219227 (2002). (b) B. Mayers, and Y. Xia, J. Mater. Chem. 12, pp.1-8 (2002). (c) B. Mayers, and Y. Xia, Adv. Mater. 14, pp. 279-282 (2002).Google Scholar
10.(a) Tellurium. Ed. Cooper, W. C., Van Nostrand Reinhold Co., New York (1971); (b) L. I. Berger, Semiconductor Materials; CRC Press: Boca Raton, FL (1997) pp. 86-88.Google Scholar
11(a) Gates, B.; Mayers, B. T.; Grossman, A. and Xia, Y., Adv. Mater. 14, 17491752 (2002). (b) B. Mayers, K. Liu, D. Sunder, and Y. Xia, Chem.Mater submitted 2003.Google Scholar
12 Mason, T. J.; Lorimer, J. P. Sonochemistry; Ellis Horwood Ltd.: Chichester, England (1988), pp. 1750.Google Scholar
13. Henshaw, G., Parkin, I. P., Shaw, G. A., J. Chem. Soc. Dalton Trans. p. 231, (1997).Google Scholar
14.(a) Gates, B., Yin, Y., and Xia, Y., J. Am. Chem. Soc. 122, p. 12582, (2000). (b) B. Gates, B. Mayers, Y. Wu, Y. Sun, P. Yang, and Y. Xia, Adv. Func. Mater, 12, 679 (2002).Google Scholar