Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-14T05:17:50.475Z Has data issue: false hasContentIssue false

Changes of Contact Potential Difference Induced by Frictional Damage in Ultrahigh Vacuum

Published online by Cambridge University Press:  10 February 2011

L. Zhang
Affiliation:
Mechanical Engineering Laboratory, 1-2 Namiki, Tsukuba, Ibaraki 305-8564, Japan
K. Nakayama
Affiliation:
Mechanical Engineering Laboratory, 1-2 Namiki, Tsukuba, Ibaraki 305-8564, Japan
Get access

Abstract

The work function is one of the most fundamental properties of a metal surface. To clarify frictional electrification phenomena, the effects of frictional damage on the contact potential difference (CPD), which is defined by the difference between the work functions of two contacting surfaces, were investigated. Au(111) and Si(111) surfaces were scratched in an ultrahigh vacuum under a light load with the Si cantilever tip of an atomic force microscope. The contact potential difference between the scratched surface and the tip whose work function was known was measured using an ultrahigh vacuum scanning Kelvin probe force microscope (SKPM). Simultaneously, the noncontact atomic force microscope (NC-AFM) images were observed in situ. The CPD images showed clear changes between the areas with and without scratching, corresponding to the scratching track on the NC-AFM images.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Harper, W. R., Proc. Roy. Soc. A205, p. 83 (1951).Google Scholar
2. Mate, C. M., McClelland, G. M., Erlandsson, R., Chiang, S., Phys. Rev. Lett. 59(17), p. 1942 (1987).Google Scholar
3. Zhong, W., Tomanek, D., Phys. Rev. Lett. 64(25), p. 3054 (1990).Google Scholar
4. Hirano, M., Shinjo, K., Kaneko, R., Murata, Y., Phys. Rev. Lett. 67(19), p. 2642 (1991).Google Scholar
5. Germann, G. J., Cohen, S. R., Neubauer, G., McClelland, G. M., Seki, H., Coulman, D., J. Appl. Phys. 73(1), p. 163 (1993).Google Scholar
6. Klein, H., Pailharey, D., Mathey, Y, Surf. Sci. 387, p. 227 (1997).Google Scholar
7. Oetelaar, R. J.A. van den, Flipse, C. F. J., Surf. Sci. 384, p. 828 (1997).Google Scholar
8. Martin, Y., Abraham, D. W., Wickramasinghe, H. K., Appl. Phys. Lett. 52(13), p. 1103 (1988).Google Scholar
9. Martin, Y, Williams, C. C., Wickramasinghe, H. K., J. Appl. Phys. 61(10), p. 4723 (1987).Google Scholar
10. Albrecht, T. R., Grutter, P., Home, D., Ruger, D., J. Appl. Phys. 69(2), p. 668 (1991).Google Scholar
11. Nonnenmacher, M., O'Boyle, M. P., Wickramasinghe, H. K., Appl. Phys, Lett. 58(25), p. 2921 (1991).Google Scholar
12. Hochwitz, T., Henning, A. K., Levey, C., Daghlian, C., Slinkman, J., Never, J., Kaszaba, P., Gluck, R., Wells, R., Pekarik, J., Finch, R., J. Vac. Sci. Technol. B 14, p. 440 (1996).Google Scholar
13. Holzl, J., Schutle, E. K., Solid Surface Physics, Spinger, 1979, pp. 1150.Google Scholar
14. Minowa, K. and Sumino, K.: Phys. Rev. Lett. 69(2), p. 320 (1992).Google Scholar
15. Monch, W.: Surf. Sci. 63, p. 79 (1977).Google Scholar