Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T14:04:04.359Z Has data issue: false hasContentIssue false

Channeling Study of the Damage Induced in Ion-Irradiated Ceramic Oxides

Published online by Cambridge University Press:  01 February 2011

Lionel Thomé
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, F-91405 Orsay, France
Aurélie Gentils
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, F-91405 Orsay, France
Frédérico Garrido
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, F-91405 Orsay, France
Jacek Jagielski
Affiliation:
Institute of Electronic Materials Technology, PL-01–919 Warsaw, Poland
Get access

Abstract

The evaluation of the damage generated in crystalline ceramic oxides placed in a radiative environment is a major challenge in many technological domains. The use of the channeling technique is particularly well adapted to measure the depth distribution of the irradiation-induced disorder and to monitor the damage build-up. This paper describes the methodology used for the study of radiation damage with the channeling technique, presents a new method of analysis of channeling data based on Monte-Carlo simulations and provides recent results concerning the damage induced in ion-bombarded ceramic oxide single crystals in both nuclear (low-energy ion irradiation) and electronic (high-energy ion irradiation) slowing-down regimes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lutze, W. and Ewing, R.C., in “Radioactive Waste Forms for the Future”, ed. Lutze, W. and Ewing, R.C. (North-Holland, Amsterdam, 1988) p. 699.Google Scholar
2. Weber, W.J., Ewing, R.C., Catlow, C.R.A., Rubia, T. Diaz de la, Hobbs, L.W., Kinoshita, C., Matzke, Hj., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R. and Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).Google Scholar
3. Degueldre, C. and Paratte, J.M., Nucl. Technol. 123, 21 (1998).Google Scholar
4. Hj., Matzke, Proceedings of the International Workshop on “Advanced Reactors with Innovative Fuels” (OECD Publications, Paris, 1999) p. 187.Google Scholar
5. Bohr, N., Mat. Fys. Medd. Dan. Vid. Selsk. 18, n°8 (1948).Google Scholar
6.Handbook of Modern Ion Beam Materials Analysis”, ed. Tesmer, J.R. and Nastasi, M., (Materials Research Society, 1995).Google Scholar
7. Cottereau, E., Camplan, J., Chaumont, J., Meunier, R. and Bernas, H., Nucl. Instrum. Meth. B 45, 293 (1990).Google Scholar
8.Materials Analysis by Ion Channeling”, ed. Feldman, L.C., Mayer, J.W. and Picraux, S.T., (Academic Press, New York, 1982).Google Scholar
9. Thomé, L., Fradin, J., Jagielski, J., Gentils, A., Enescu, S. and Garrido, F., Eur. Phys. J. Appl. Phys. 24, 37 (2003).Google Scholar
10. Thomé, L., Gentils, A., Jagielski, J., Enescu, S. and Garrido, F., Proc. Int. Conf.: “Ion Beam Analysis“, Albuquerque, USA (2003), in press Nucl. Instrum. Meth. B.Google Scholar
11. Jagielski, J., Gentils, A., Thomé, L., Garrido, F., Nowicki, L. and Klaumünzer, S., Proc. Int. Conf.: “Ion Beam Analysis “, Albuquerque, USA (2003), in press Nucl. Instrum. Meth. B.Google Scholar
12. Barrett, J.H., Phys. Rev. B 3, 1527 (1971).Google Scholar
13. Smulders, P.J.M. and Boerma, D.O., Nucl. Instrum. and Meth. B 27, 471 (1987).Google Scholar
14. Dygo, A. and Turos, A., Phys. Rev. B 40, 7704 (1989).Google Scholar
15. Khodyrev, V.A., Chumanov, V.Ya., Bourdelle, K.K. and Pokhil, G.P., Nucl. Instrum. Meth. B 94, 523 (1994).Google Scholar
16. Kling, A., Nucl. Instrum. Meth. B 102, 141 (1995).Google Scholar
17. Nowicki, L., Ph.D. Thesis (The Andrzej Soltan Institute for Nuclear Studies, Warsaw, 1997).Google Scholar
18. Hj., Matzke, Radiat. Eff. 64, 3 (1982).Google Scholar
19. Hobbs, L.W., Clinard, F.W. Jr, Zinkle, S.J. and Ewing, R.C., J. Nucl. Mater. 216, 291 (1994).Google Scholar
20. Ewing, R.C., Weber, W.J. and Clinard, F.W. Jr, Prog. Nucl. Energy 29, 63 (1995).Google Scholar
21. Zinkle, S.J. and Kinoshita, C., J. Nucl. Mater. 251, 200 (1997).Google Scholar
22. McHargue, C.J., Mat. Sci. Engin. A 253, 94 (1998).Google Scholar
23. Weber, W.J., J. Mater. Res. 5, 2687 (1990).Google Scholar
24. Weber, W.J., Nucl. Instrum. Meth. B 65, 88 (1992).Google Scholar
25. Yu, N., Sickafus, K.E., Kodali, P. and Nastasi, M., J. Nucl. Mater. 244, 266 (1997).Google Scholar
26. Mitchell, J.N., Yu, N., Sickafus, K.E., Nastasi, M.A. and McClellan, K.J., Phil. Mag. A 78, 713 (1998).Google Scholar
27. Yasuda, K., Nastasi, M., Sickafus, K.E., Maggiore, C.J. and Yu, N., Nucl. Instrum. Meth. B 136–138, 499 (1998).Google Scholar
28. Thomé, L., Jagielski, J. and Garrido, F., Europhys. Lett. 47, 203 (1999).Google Scholar
29. Sickafus, K.E., Hj., Matzke, Th., Hartmann, Yasuda, K., Valdez, J.A., Chodak, P. III, Nastasi, M. and Verrall, R.A., J. Nucl. Mater. 274, 66 (1999).Google Scholar
30. Thomé, L., Jagielski, J., Binet, C. and Garrido, F., Nucl. Instrum. Meth. B 166–167, 258 (2000).Google Scholar
31. Li, F., Ishimaru, M., Lu, P., Afanasyev-Charkin, I.V. and Sickafus, K.E., Nucl. Instrum. Meth. B 166–167, 314 (2000).Google Scholar
32. Fradin, J., Thomé, T., Grynszpan, R.I., Thomé, L., Anwand, W. and Brauer, G., Nucl. Instrum. Meth. B 175–177, 516 (2001).Google Scholar
33. Jiang, W., Weber, W.J. and Thevuthasan, S., Nucl. Instrum. Meth. B 175–177, 610 (2001).Google Scholar
34. Weber, W.J., Ewing, R.C. and Wang, L.M., J. Mater. Res. 9, 688 (1994).Google Scholar
35. Weber, W.J. and Wang, L.M., Nucl. Instrum. Meth. B 91, 63 (1994).Google Scholar
36. Seitz, F. and Koehler, J.S., “Solid State Physics: Advances in Research and Applications”, ed. Seitz, F. and Turnbull, D. (Academic, N.Y., 1956) p. 305.Google Scholar
37. Toulemonde, M., Dufour, C. and Paumier, E., Phys. Rev. B 46, 14362 (1992).Google Scholar
38. Szenes, G., Phys. Rev. B 51, 8026 (1995).Google Scholar
39. Trinkaus, H. and Ryazanov, A.I., Phys. Rev. Lett. 74, 5072 (1995).Google Scholar
40. Fleischer, R.L., Price, P.B. and Walker, R.M., J. Appl. Phys. 36, 3645 (1965).Google Scholar
41. Seiberling, L.E., Griffith, J.E. and Tombrello, T.A., Rad. Eff. 52, 201 (1980).Google Scholar
42. Lesueur, D. and Dunlop, A., Radiat. Eff. Def. Solids 126, 105 (1993).Google Scholar
43. Toulemonde, M., Nucl. Instrum. Meth. B 156, 1 (1999).Google Scholar
44. Wiss, T., Hj., Matzke, Trautmann, C., Toulemonde, M. and Klaumünzer, S., Nucl. Instrum. Meth. B 122, 583 (1997).Google Scholar