Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T10:21:58.985Z Has data issue: false hasContentIssue false

Characterization of Ag Nanocrystals for use in Solar Cell Applications

Published online by Cambridge University Press:  31 January 2011

Annett ThØegersen
Affiliation:
annettthogersen@gmail.com, Institute for Energy Technology, Solar Energy, Oslo, Norway
Jack Bonsak
Affiliation:
jack.bonsak@ife.no, Institute for Energy Technology, Solar Energy, Oslo, Norway
Jeyanthinath Mayandi
Affiliation:
Jeyanthinath.Mayandi@ife.no, Institute for Energy Technology, Solar Energy, Oslo, Norway
Erik Stensrud Marstein
Affiliation:
erik.stensrud.marstein@ife.no, Institute for Energy Technology, Solar Energy, Oslo, Norway
Mahalingam Umadevi
Affiliation:
ums10@yahoo.com, Mother Teresa Women’s University, Physics, Kodaikanal, India
Get access

Abstract

Ag nanocrystals made by chemical synthesis have been used in solar cell applications as a part of light trapping. The shape, crystal structure, defects and composition of these nanocrystals have been studied in detail. Samples with different ratios of silver solution (AgNO3) and reductant (NaBH4) were made, and a difference in nanocrystal size was observed. HRTEM and diffraction patterns showed that the samples contained mostly Ag nanocrystals, and some of them contained Ag2O nanocrystals as well. Some nanocrystals contained large defects, mostly twinning, which induced facets on the nanocrystal surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]: Malinsky, M. D. Kelly, L. K. Schatz, G. C. and Duyne, R. P. Van, J. Am. Chem. Soc. 123, 1471 (2001).[3]:Pillai, S. Catchpole, K. R. Trupke, T. and Green, M. A. J. Appl. Phys. 101, 093105 (2007)Google Scholar
[2]: Sileikaite, A. Prosycevas, I. Puiso, J. Juraitis, A. Guobiene, A. Mater. Sci. Medziagotyra 15 (1), 21 (2009).Google Scholar
[3]: Pillai, S. Catchpole, K. R. Trupke, T. and Green, M. A. J. Appl. Phys. 101, 093105 (2007)Google Scholar
[4]: Hofmeister, H. Dubiel, M. Tan, G.L. and Schicke, K.D. Phys. Stat. Sol. 202 (12), 2321 (2005)Google Scholar
[5]: Vorobyova, S. A. Lesnikovich, A. I. Sobal, N. S. Colloids Surf. A 152, 375 (1999).Google Scholar
[6]: Choi, S. H. Zhang, Y. P. Gopalan, A. Lee, K. P. Kang, H. D. Colloids Surf. 256, 165 (2005).Google Scholar
[7]: Li, Z. Li, Y. Qian, X. F. Yin, J. Zhu, Z. K. Appl. Surf. Sci. 250, 109 (2005).Google Scholar
[8]: Tsuji, T. Watanabe, N. Tsuji, M. Appl. Surf. Sci. 211, 189 (2003).Google Scholar
[9]: Kipke, A. and Hofmeister, H.. Mater. Chem. Phys. 111 (2-3), 254 (2008).Google Scholar
[10]: Koski, K. J. Kamp, N.M. Smith, R.K., Kunz, M. Knight, J.K., and Alivisatos, A.P. Phys. Rev. B 78, 165410 (2008).Google Scholar