Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T01:02:41.486Z Has data issue: false hasContentIssue false

Characterization of an Ultra Thin Dense Hafnium Oxide Compact Layer with Electrochemical Impedance Spectroscopy for Dye-Sensitized Solar Cell Application

Published online by Cambridge University Press:  01 February 2011

Braden Bills
Affiliation:
blbills@jacks.sdstate.edu, South Dakota State University, Brookings, South Dakota, United States
Mariyappan Shanmugam
Affiliation:
Mariyappan.Shanmugam@sdstate.edu, South Dakota State University, Brookings, South Dakota, United States
Mahdi Farrokh Baroughi
Affiliation:
m.farrokhbaroughi@sdstate.edu, South Dakota State University, Brookings, South Dakota, United States
David Galipeau
Affiliation:
David.Galipeau@sdstate.edu, South Dakota State University, Brookings, South Dakota, United States
Get access

Abstract

The performance of dye-sensitized solar cells (DSSCs) is limited by the back-reaction of photogenerated electrons from the photoelectrode back into the electrolyte solution. An atomic layer deposited (ALD) hafnium oxide (HfO2) ultra thin, a few nanometers, compact layer was grown on the surface of the transparent conducting oxide (TCO) and its effects on the performance of DSSCs were studied with dark and illuminated current-voltage and electrochemical impedance spectroscopy (EIS) measurements. Further, the theory of electron recombination at the TCO/electrolyte interface was developed and used to explain the improved DSSC performance with an ALD HfO2 compact layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cameron, P. J., Peter, L. M., J. Phys. Chem. B 109 (2005) 930.Google Scholar
2 Burke, A., Ito, S., Snaith, H., Bach, U., Kwiatkowski, J., Grätzel, M., Nano Lett. 8, 4, (2008) 977.Google Scholar
3 Lee, S., Noh, J. H., Han, H. S., Yim, D. K., Kim, D. H., Lee, J. K., Kim, J. Y., Jung, H. S., Hong, K. S., J. Phys. Chem. C 113 (2009) 6878.Google Scholar
4 Hamann, T. W., Farha, O. K., Hupp, J. T., J. Phys. Chem. C 112 (2008) 19756.Google Scholar
5 Wang, Q., Moser, J., Grätzel, M., J. Phys. Chem. B 109 (2005) 14945.Google Scholar
6 Fabregat-Santiago, F., Garcia-Cañadas, J., Palomares, E., Clifford, J. N., Haque, S. A., Durrant, J. R., Garcia-Belmonte, G., Bisquert, J., J. Appl. Phys. 96, 11 (2004) 6903.Google Scholar
7 Fabregat-Santiago, F., Bisquert, J., Palomares, E., Otero, L., Kuang, D., Zakeeruddin, S. M., Grätzel, M., J. Phys. Chem. C 111 (2007) 6559.Google Scholar
8 Wang, Q., Ito, S., Grätzel, M., Fabregat-Santiago, F., Mora-Seró, I., Bisquert, J., Bessho, T., Imai, H., J. Phys. Chem. B 108 (2006) 25210.Google Scholar
9 Fabregat-Santiago, F., Bisquert, J., Garcia-Belmonte, G., Boschloo, G., Hagfeldt, A., Sol. Energy. Mater. Sol. Cells 87 (2005) 117.Google Scholar
10 Hsu, C. H., Mansfeld, F., Corrosion 57, 9 (2001) 747.Google Scholar