Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-14T18:17:15.641Z Has data issue: false hasContentIssue false

Characterization of Ferroelectric Properties of Bi4-xPrxTi3O12 Polycrystals

Published online by Cambridge University Press:  26 February 2011

Abril Munro
Affiliation:
amunro@ccmc.unam.mx, Centro de Investigación Científica y Estudios Superiores de Ensenada, Postgrado en Física de Materiales, CICESE-CCMC, Apdo. Postal 2732, Ensenada, Baja California, 22860, Mexico
Jorge Mata
Affiliation:
jmata@ccmc.unam.mx, Universidad Nacional Autónoma de México, Centro de Ciencias de la Materia Condensada, Apdo . Postal 2681, Ensenada, Baja California, 22800, Mexico
Eduardo Martínez
Affiliation:
guerra@ccmc.unam.mx, Universidad Nacional Autónoma de México, Centro de Ciencias de la Materia Condensada, Apdo. Postal 2681, Ensenada, Baja California, 22800, Mexico
Jesus Siqueiros
Affiliation:
jesus@ccmc.unam.mx, Universidad Nacional Autónoma de México, Centro de Ciencias de la Materia Condensada, Apdo. Postal 2681, Ensenada, Baja California, 22800, Mexico
Get access

Abstract

Effects of Praseodymium doping on the ferroelectric properties of Bi4Ti3O12 were investigated using dense ceramics from room temperature to 730 °C. DRX and XPS studies shows that the structure can accept only 10% of praseodymium without the precipitation of second phases. Thermoelectric analysis and ferroelectric hysteresis measurements were performed and show that the incorporation of praseodymium modified the transition temperature Tc and slightly the polarization values. The incorporation of praseodymium resulted in a variation in the permittivity and in the remanent polarization (2Pr). The polarization characteristics in the samples doping were different to Bi4Ti3O12.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Park, B. H., Kang, B. S., Bu, S. D., Noh, T. W., Lee, J. & Jo, W.. Nature 401, 682 (1999).Google Scholar
2. Dorrian, J. F., Newnham, R. E. and Smith, D. K., Ferroelectrics, 3, 17 (1971).Google Scholar
3. Rae, A. D. Thompson, J. G., Withers, R. L. and Willis, A. C. Acta Cryst. B 46, 474 (1990).Google Scholar
4. Fouskova, A. and Cross, L. E. J. Appl. Phys., 41, 2834, (1970).Google Scholar
5. Yang, B., Lee, S. S., Kang, Y. M., Noh, K.H., Kim, S. W. Lee, , N. K., Kweon, S. Y., Yeom, S. J., and Park, Y. J., Jpn. J. Appl. Phys. 42, 1327 (2003).Google Scholar
6. Paz de Araujo, C. A., Cuchiaro, J. D., McMillan, L. D., Scott, M. C. and Scott, J. F., Nature, 374, 627 (1995).Google Scholar
7. Yao, Y. Y., Song, C. H., Bao, P., Su, D., Lu, X. M., Zhu, J. S., and Wang, Y. N.. J. Appl. Phys. 95, 3126 (2004).Google Scholar
8. Pineda-Flores, J. L., Chavira, E., Reyes-Gasga, J., Gonzalez, A.M., Huanosta-Tera, A., J. Europ. Ceram. Soc. 23, 839 (2003).Google Scholar
9. Lopatin, S. S., Kupeiko, T. G., Vasiltsova, T. L., Basenko, N. I. and Berlizev, I. M., Inorg. Mater., 24, 1328 (1988).Google Scholar
10. Chen, M., Liu, Z.L., Wang, Y., Wang, C.C., Yang, X.S., Yao, K.L., Solid State Commun. 130, 735 (2004).Google Scholar
11. Watanabe, T., Kojima, T., Sakai, T., Funakubo, H., Osada, M., Noguchi, Y., Miyayama, M., J. Appl. Phys. 92, 1518 (2002).Google Scholar
12. Noguchi, Y., Kitamura, A., Woo, Lee-C., Miyayama, M., Oikawa, K. and Kamiyama, T., J. Appl. Phys. 94 6749 (2003).Google Scholar
13. Noguchi, Y., Miyayama, M. and Kudo, T. Phys. Rev. B 63 214102 (2001).Google Scholar
14. Noguchi, Y., Miyayama, M., Oikawa, K., Kamiyama, T., Osada, M., Kakihana, M., Jpn. J. Appl. Phys. 41 7062 (2002).Google Scholar