Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T09:21:29.661Z Has data issue: false hasContentIssue false

Characterization of Metallurgical Defects in the Melt Zone of 304L Steel Tubes Manufactured by GTAW Process

Published online by Cambridge University Press:  31 January 2012

J.J. Ruíz-Mondragón
Affiliation:
Corporación Mexicana de Investigación en Materiales (COMIMSA). Calle Ciencia y Tecnología No 790 Fraccionamiento Saltillo 400, Saltillo, Coahuila, México, C.P. 25290. E-mail: jjorge.ruiz@comimsa.com
J. Acevedo-Dávila
Affiliation:
Corporación Mexicana de Investigación en Materiales (COMIMSA). Calle Ciencia y Tecnología No 790 Fraccionamiento Saltillo 400, Saltillo, Coahuila, México, C.P. 25290. E-mail: jjorge.ruiz@comimsa.com
F. García-Vázquez
Affiliation:
Corporación Mexicana de Investigación en Materiales (COMIMSA). Calle Ciencia y Tecnología No 790 Fraccionamiento Saltillo 400, Saltillo, Coahuila, México, C.P. 25290. E-mail: jjorge.ruiz@comimsa.com
H.M. Hdz-García
Affiliation:
Corporación Mexicana de Investigación en Materiales (COMIMSA). Calle Ciencia y Tecnología No 790 Fraccionamiento Saltillo 400, Saltillo, Coahuila, México, C.P. 25290. E-mail: jjorge.ruiz@comimsa.com
Get access

Abstract

This study consisted of the characterization of longitudinal cracking pattern observed in weld joint in the manufacture of 304L steel pipelines with thin wall thickness by GTAW process. These tubes are used in food and automotive industries. The cracks grown in the liquid-solid interdendritic zones at high temperatures. It was found that the cracks are associated with change on solidification mode and presence of the holes produced by shrinkage. The change in the solidification mode was associated with the presence of second phase particles. The results suggest that the formation of cracks is promoted by increasing current during the welding although the heat input is constant.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kou, S.. “Welding Metallurgy” (J. Willey 2003) p 457.Google Scholar
2. Shyu, S. W., Huang, H. Y., Tseng, K. H. and Chou, C. P.. J Mater. Engineering and Performance 17, 193201 (2008).Google Scholar
3. Li, Z., Zhong, H., Sun, Q., Xu, Z. and Zhai, Q.. Materials Science and Engineering A 506, 191195 (2009).Google Scholar
4. Lippold, J. C. and Kotecki, D. J.. “Welding Metallurgy and weldability of stainless steels”. (John Willey 2005) p357.Google Scholar
5. Korinko, P. S. and Malene, S.H., ASM International 4, 6168 (2001).Google Scholar
6. Jang, A.Y., Lee, D.J., Lee, S.H., Shim, J.H., Kang, S.W., Lee, H.W., Materials & Design 32, 371376 (2011).Google Scholar
7. Kacar, R., Baylan, O.. Materials & Design 25, 317329 (2004).Google Scholar
8. Lo, K.H., Shek, C.H., Lai, J.K.L.. Materials Science and Engineering: R: Reports 65, 39104(2009).Google Scholar
9. Kumar, S., Shahi, A.S.. Materials & Design 32, 36173623 (2011).Google Scholar