Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-30T22:57:15.130Z Has data issue: false hasContentIssue false

Characterization of Microcrystalline Silicon by High Wavenumber Raman Scattering

Published online by Cambridge University Press:  31 January 2011

Erik V Johnson
Affiliation:
erik.johnson@polytechnique.edu, LPICM-CNRS, Palaiseau, France
Laurent Kroely
Affiliation:
laurent.kroely@polytechnique.edu, LPICM-CNRS, Palaiseau, France
Mario Moreno
Affiliation:
mario.moreno@polytechnique.edu, LPICM-CNRS, Palaiseau, France
Pere Roca i Cabarrocas
Affiliation:
pere.roca@polytechnique.edu, LPICM-CNRS, Palaiseau, France
Get access

Abstract

One of the primary challenges in the application of hydrogenated microcrystalline silicon (μc-Si:H) to photovoltaic cells is achieving high growth rates while maintaining good material quality over a wide process window. The rapid characterization of the material without generating a complete cell is thus a useful tool to determine said process window. Infrared absorption due to the various vibrational modes of the material has been used as a coarse tool towards this purpose, but the use of FTIR to perform this diagnosis limits the substrates upon which the analysis can be performed. We report on the use of high wave-number (1800-2200 cm-1) Raman scattering to perform a similar role of telltale peak detection directly on solar cells and on substrates suitable for thin-film photovoltaics. We evaluate material grown from SiF4 by RF-PECVD and from SiH4 by Matrix Distributed Electron Cyclotron Resonance (MDECR-) PECVD.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Smets, A. H. M. Matsui, T. and Kondo, M. J. Appl. Phys. 104, 034508(2008).Google Scholar
2 Veprek, S. Iqbal, Z. Oswald, H.R. and Webb, A.P. J. Phys. C: Solid State Phys. 14, 295(1981).Google Scholar
3 Imura, T., Mogi, K. Hiraki, A. Nakashima, S. and Mitsuishi, A. Solid State Commun. 40, 161 (1981).Google Scholar
4 Marra, D.C. Edelberg, E.A. Naone, R.L. and Aydil, E.S. J. Vqc. Sci. Technol. A16, 3199(1998).Google Scholar
5 Cabarrocas, P. Rocai, Layadi, N. Heitz, T. Drévillon, B. and Solomon, I. Appl. Phys. Lett. 66, 3609(1995).Google Scholar
6 Stryahilev, D. Diehl, F. Schröder, B., Scheib, M. and Belogorokhov, A.I. Phil. Mag. N 80, 1799(2000).Google Scholar
7 Kail, F. Hadjadj, A. and Cabarrocas, P. Rocai, Thin Solid Films 487, 126(2005).Google Scholar
8 Cabarrocas, P. Rocai, Bulkin, P. Daineka, D. Dao, T. H. Leempoel, P. Descamps, P. Meerendre, T. Kervyn de and Charliac, J. Thin Solid Films 516 6834 (2008).Google Scholar
9 Zhang, Q. Johnson, E. V. Djeridane, Y. Abramov, A. and Cabarrocas, P. Rocai, physica status solidi (RRL) 2, 154 (2008).Google Scholar
10 Lucovsky, G., Solid State Commun. 29, 571(1979).Google Scholar