Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T05:55:45.067Z Has data issue: false hasContentIssue false

Characterization of Nitride Thin Films by Electron Backscatter Diffraction and Electron Channeling Contrast Imaging

Published online by Cambridge University Press:  01 February 2011

Carol Trager-Cowan
Affiliation:
c.trager-cowan@strath.ac.uk, Strathclyde University, Physics, John Anderson Building,, 107 Rottenrow, Glasgow, N/A, G4 0NG, United Kingdom
Francis Sweeney
Affiliation:
.sweeney@phys.strath.ac.uk
A J Wilkinson
Affiliation:
noname@noname.com
P W Trimby
Affiliation:
noname@noname.com
A. P. Day
Affiliation:
HKL TECHNOLOGY A/S, Majsmarken 1, Hobro, DK 9500, Denmark
A Gholinia
Affiliation:
noname@noname.com
N-H Schmidt
Affiliation:
noname@noname.com
P J Parbrook
Affiliation:
noname@noname.com
I M Watson
Affiliation:
noname@noname.com
Get access

Abstract

In this paper we describe the use of electron backscatter diffraction (EBSD) mapping and electron channeling contrast imaging—in the scanning electron microscope—to study tilt, atomic steps and dislocations in epitaxial GaN thin films. We show results from epitaxial GaN thin films and from a just coalesced epitaxial laterally overgrown GaN thin film. From our results we deduce that EBSD may be used to measure orientation changes of the order of 0.02°, in GaN thin films. As EBSD has a spatial resolution of ≈ 20 nm, this means we have a powerful technique with which to quantitatively map surface tilt. We also demonstrate that channeling contrast in electron channeling contrast images may be used to image tilt, atomic steps and threading dislocations in GaN thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mathis, S. K., Romanov, A. E., Chen, L. F., Belz, G. E., Pompe, W. and Speck, J. S., phys. stat. sol. (a) 179, 125 (2000).3.0.CO;2-2>CrossRef3.0.CO;2-2>Google Scholar
2 Marchand, H., Wu, X. H., Ibbetson, J. P., Fini, P. T., Kozodoy, P., Keller, S., Speck, J. S., DenBaars, S. P. and Mishra, U. K., Appl. Phys. Lett. 73, 747 (1998).CrossRefGoogle Scholar
3 Humphreys, F. J., Huang, Y., Brough, I. and Harris, C., J. Microsc., 195, 212 (1999).CrossRefGoogle Scholar
4 Schwartz, A. J., Kumar, M. and Adams, B. L., Electron Backscatter Diffraction in Materials Science (Kluwer Academic/Plenum Publishers, 2000)CrossRefGoogle Scholar
5 Prior, D., Boyle, A., Brenker, F., Cheadle, M., Day, A., Lopez, G., Peruzzo, L., Potts, G., Reddy, S., Spiess, R., Timms, N., Trimby, P., Wheeler, J., and Zetterström, L., Am. Mineralogist, 84, 1741 (1999).CrossRefGoogle Scholar
6 Randle, V. and Engler, O., Texture Analysis, Macrotexture, Microtexture and Orientation Mapping (Taylor & Francis, 2000)Google Scholar
7 Wilkinson, A. J., J. Electron Microsc. 49, 299 (2000).CrossRefGoogle Scholar
8 Troost, K. Z., Van Der Sluis, P., and Gravesteijn, D. J., Appl. Phys. Lett. 62, 1110 (1993).Google Scholar
9 Baba-Kishi, K. Z., J. Appl. Cryst. 24, 38 (1991).CrossRefGoogle Scholar
10 Trager-Cowan, C., Sweeney, F., Hastie, J., Manson-Smith, S. K., Cowan, D. A., McColl, D., Mohammed, A, O'Donnell, K P, Zubia, D, Hersee, S D, Foxon, C T, Harrison, I and Novikov, S. V, J. Microsc. 205, 226 (2002).CrossRefGoogle Scholar
11 Trager-Cowan, C., Sweeney, F., Wilkinson, A. J., Watson, I. M., Middleton, P. G., O'Donnell, K. P., Zubia, D., Hersee, S. D., Einfeldt, S. and Hommel, D., phys. stat. sol. (c) 0, 532 (2002).Google Scholar
12 Sweeney, F. et al. , paper in preparation.Google Scholar
13 Wilkinson, A. J. and Hirsch, P. B., Micron, 28, 279 (1997).CrossRefGoogle Scholar
14 Prior, D. J., Trimby, P.W, Weber, U. D. and Dingley, D. J., Mineralogical Magazine, 60, 859 (1996).CrossRefGoogle Scholar
15 Prior, D., Boyle, A., Brenker, F., Cheadle, M., Day, A., Lopez, G., Peruzzo, L., Potts, G., Reddy, S., Spiess, R., Timms, N., Trimby, P., Wheeler, J., and Zetterström, L., Am. Mineralogist, 84, 1741 (1999).CrossRefGoogle Scholar
16 Watson, I. M., Liu, C., Kim, K. S., Kim, H.-S., Deatcher, C. J., Girkin, J. M., Dawson, M. D., Edwards, P. R., Trager-Cowan, C. and Martin, R. W., phys. stat. sol. (a), 188, 743 (2001).3.0.CO;2-B>CrossRef3.0.CO;2-B>Google Scholar
17 Humphreys, F. J., J. Microsc., 195, 170 (1999).CrossRefGoogle Scholar
18 Trimby, P., Trager-Cowan, C. and Parbrook, P. J., HKL Applications Catalogue, 2, 1419 (2003)Google Scholar
19 Trager-Cowan, C. et al. , to be submitted to Phys. Rev. B.Google Scholar
20 Wang, Z. L., Rep. Prog. Phys., 56, 997 (1993).CrossRefGoogle Scholar
21 Pohland, O., Tong, X., and Gibson, J. M., J. Vac. Sci. Technol. A 11, 1837 (1993).CrossRefGoogle Scholar
22 Lafford, T. A., Parbrook, P. J. and Tanner, B. K., phys. stat. sol. (c), 0, 542 (2002).Google Scholar
23 Follstaedt, D. M., Milssert, N. A., Koleske, D. D., Mitchell, C. C. and Cross, K. C., Appl. Phys. Lett. 83, 4797 (2003).CrossRefGoogle Scholar
24 Datta, R., Kappers, M. J., Barnard, J. S. and Humphreys, C. J., Appl. Phys. Lett., 85, 3411, (2004).CrossRefGoogle Scholar