Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T10:04:44.215Z Has data issue: false hasContentIssue false

Characterization of Structure and Mechanical Properties of MoSi2-SiC Nanolayer Composites

Published online by Cambridge University Press:  25 February 2011

H. Kung
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
T. R. Jervis
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
J-P. Hirvonen
Affiliation:
Technical Research Centre of Finland, Espoo, Finland
M. Nastasi
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
T. E. Mitchell
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
Get access

Abstract

A systematic study of the structure-mechanical properties relationship is reported for MoSi2-SiC nanolayer composites. Alternating layers of MoSi2 and SiC were synthesized by DCmagnetron and if-diode sputtering, respectively. Cross-sectional transmission electron microscopy was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures. Nanoindentation was employed to characterize the mechanical response as a function of the structural changes. As-sputtered material exhibits amorphous structures in both types of layers and has a hardness of 11GPa and a modulus of 217GPa. Subsequent heat treatment induces crystallization of MoSi2 to form the C40 structure at 500°C and SiC to form the a structure at 700°C. The crystallization process is directly responsible for the hardness and modulus increase in the multilayers. A hardness of 24GPa and a modulus of 340GPa can be achieved through crystallizing both MoSi2 and SiC layers. Annealing at 900°C for 2h causes the transformation of MoSi2 into the Cllb structure, as well as spheroidization of the layering to form a nanocrystalline equiaxed microstructure. A slight degradation in hardness but not in modulus is observed accompanying the layer break-down.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koehler, J.S., Phys. Rev. B2, 547, (1970).Google Scholar
2. Lehoczky, S.L., J. Appl. Phys. 49, 5479, (1978).CrossRefGoogle Scholar
3. Lehoczky, S.L., Phys. Rev. Lett. 41, 1814, (1978).Google Scholar
4. Tuominen, S.M., J. Less-Common Met. 81, 249, (1981).CrossRefGoogle Scholar
5. Aikin, R.M. Jr., Ceram. Eng. Sci. Proc. 12, 1643, (1991).CrossRefGoogle Scholar
6. Petrovic, J.J., Honnell, R.E., Ceram. Eng. Sci. Proc. 11, 734, (1990).Google Scholar
7. Hirvonen, J-P., Lappalainen, R., Kattelus, H., Lidonen, J., Suni, I., Kung, H., Jervis, T.R. and Nastasi, M. in Nanophase and Nanocomposite materials, edited by Parker, J.C. and Thomas, G.J. (Mater. Res. Soc. Proc. 286 Pittsburgh, PA, 1992) pp. 373378.Google Scholar
8. Oliver, W.C., Hutchings, R., and Pethica, J.B., ASTM Spec. Tech. Pub. 889, 90, (1986).Google Scholar
9. Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564, (1992).Google Scholar
10. Fabes, B.D., Oliver, W.C., McKee, R.A. and Walker, F.J., J. Mater. Res. 7, 3056, (1992).CrossRefGoogle Scholar
11. Doerner, M.F. and Nix, W.D., J. Mater. Res., 601 (1986).Google Scholar
12. Boettinger, W.J., Perepezko, J.H. and Frankwicz, P.S., Mat. Sci. Eng A155, 33, (1992).Google Scholar
13. Chou, T.C. and Nieh, T.G., Thin Solid Films 214, 48, (1992).CrossRefGoogle Scholar
14. Kung, H., Jervis, T.R., Hirvonen, J-P., Nastasi, M. and Mitchell, T.E. (to be published).Google Scholar
15. Hong, J.D., Hon, M.H. and Davis, R.F., Mater. Sci. Monogr. 6, 409, (1980).Google Scholar
16. Fitzer, E., Berg-Hiittenmdnn, Monatsh, Leobun 97, 81, (1952).Google Scholar
17. Czarnik, C.M., Jervis, T.R., Nastasi, M. and Gibala, R., this symposium.Google Scholar
18. Henager, C.H., Brinhall, J.L., and Hirth, J.P., Scripta metall.mater. 26, 585, (1992).CrossRefGoogle Scholar