Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T10:05:00.396Z Has data issue: false hasContentIssue false

Characterization of the CuGaSe2/ZnSe Interface Using Kelvin Probe Force Microscopy

Published online by Cambridge University Press:  21 March 2011

S. Sadewasser
Affiliation:
Hahn-Meitner Institut, Glienicker Str. 100, 14109 Berlin, Germany
Th. Glatzel
Affiliation:
Hahn-Meitner Institut, Glienicker Str. 100, 14109 Berlin, Germany
M. Rusu
Affiliation:
State University of Moldova, Department of Physics, 60, a. Mateevici Street, Chisinau, MD-2009, Moldova
A. Meeder
Affiliation:
Hahn-Meitner Institut, Glienicker Str. 100, 14109 Berlin, Germany
D. Fuertes Marrón
Affiliation:
Hahn-Meitner Institut, Glienicker Str. 100, 14109 Berlin, Germany
A. Jäger-Waldau
Affiliation:
Hahn-Meitner Institut, Glienicker Str. 100, 14109 Berlin, Germany
M.Ch. Lux-Steiner
Affiliation:
Hahn-Meitner Institut, Glienicker Str. 100, 14109 Berlin, Germany
Get access

Abstract

To improve the efficiency of heterostructure solar cells based on chalcopyrite semiconductors a good understanding of the interface properties is crucial. By Kelvin Probe Force Microscopy it is possible to obtain laterally resolved images of the work function of semiconductor surfaces in addition to the topographical information usually obtained by noncontact atomic force microscopy. We studied the CuGaSe2/ZnSe interface prepared by growth of CuGaSe2 onto the (110) face of freshly cleaved ZnSe single crystals using chemical vapor deposition. We observed different work function values for different crystal facets on single CuGaSe2 grains. From the obtained work function data and surface photovoltage measurements a schematic band diagram for the CuGaSe2/ZnSe heterostructure is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Contreras, M., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., and Noufi, R., Prog. Photovolt. 7, 311 (1999).Google Scholar
2. Herberholz, R., Nadenau, V., Rühle, U., Köble, C., Schock, H.W., and Dimmler, B., Solar Energy Mater. Solar Cells 49, 227 (1997).Google Scholar
3. Rau, U., Schock, H.W., Appl. Phys. A 69, 131 (1999).Google Scholar
4. Bauknecht, A., Blieske, U., Kampschulte, T., Albert, J., Sehnert, H., Lux-Steiner, M.Ch., Klein, A., and Jaegermann, W., Appl. Phys. Lett. 74, 1099 (1999).Google Scholar
5. Kronik, L., Burstein, L., Leibovitch, M., Shapira, Y., Gal, D., Moons, E., Beier, J., Hodes, G., Cahen, D., Hariskos, D., Klenk, R., and Schock, H.-W., Appl. Phys. Lett. 67, 1405 (1995).Google Scholar
6. Kikukawa, A., Hosaka, S., and Imura, R., Rev. Sci. Instrum. 67, 1463 (1996).Google Scholar
7. Sommerhalter, Ch., Glatzel, Th., Matthes, Th.W., Jäger-Waldau, A., and Lux-Steiner, M.Ch., Appl. Surf. Sci. 157, 263 (2000).Google Scholar
8. Fischer, D., Dylla, T., Meyer, N., Beck, M.E., Jäger-Waldau, A., and Lux-Steiner, M.Ch., Thin Solid Films 387, 63 (2001).Google Scholar
9. Sommerhalter, Ch., Matthes, Th.W., Glatzel, Th., Jäger-Waldau, A., and Lux-Steiner, M.Ch., Appl. Phys. Lett. 75, 286 (1999).Google Scholar
10. Rusu, M., Gashin, P., Simashkevich, A., Sadewasser, S., Glatzel, Th., Jäger-Waldau, A., EMRS Meeting, Strasbourg, June 5-8, 2001.Google Scholar
11. Kronik, L. and Shapira, Y., Surf. Sci. Rep. 37, 1 (1999) and references therein.Google Scholar
12. Sommerhalter, Ch., Sadewasser, S., Glatzel, Th., Matthes, Th.W., Jäger-Waldau, A., and Lux-Steiner, M.Ch., Surface Science, in press (2001).Google Scholar
13. Sadewasser, S., Glatzel, Th., Rusu, M., Jäger-Waldau, A., and Lux-Steiner, M.Ch., in preparation.Google Scholar
14. Meeder, A., Marrón, D. Fuertes, Chu, V., Conde, J.P., Jäger-Waldau, A., and Lux-Steiner, M.Ch., EMRS Meeting, Strasbourg, June 5-8, 2001.Google Scholar
15. Wei, S.-H. and Zunger, A., J. Appl. Phys. 78, 3846 (1995) and references therein.Google Scholar