Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T14:13:54.889Z Has data issue: false hasContentIssue false

Charge Generation and Transport in CdSe Semiconductor Quantum Dot Solids

Published online by Cambridge University Press:  10 February 2011

C. A. Leatherdale
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
N.Y. Morgan
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
C. R. Kagan
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
S. A. Empedocles
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
M. G. Bawendi
Affiliation:
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
M. A. Kastner
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We demonstrate photoconductivity and conductivity in three-dimensional close-packed solids of colloidal CdSe quantum dots. We observe quantum dot size and surface passivation dependent photoconductivity that can be qualitatively understood by considering the energy required in order to overcome the Coulomb energy of the initial electron-hole pair. Our results suggest that surface ligands that promote initial separation of the electron and hole reduce the electric field required for the onset of the photocurrent. The dark conductance is much smaller than the photoconductance. Hysteretic behaviour and extremely long-lived current transients are observed in the dark current that are suggestive of Coulomb-glass behaviour.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murray, C.B., Kagan, C.R., and Bawendi, M.G., Science 270 (5240), 13351338 (1995).10.1126/science.270.5240.1335Google Scholar
2. Korgel, B.A. and Fitzmaurice, D., Phys. Rev. Lett. 80 (16), 35313534 (1998).10.1103/PhysRevLett.80.3531Google Scholar
3. Collier, C.P., Saykally, R.J., Shiang, J.J., Henrichs, S.E., and Heath, J.R., Science 277 (5334), 19781981 (1997).10.1126/science.277.5334.1978Google Scholar
4. Terrill, R.H., Postlethwaite, T.A., Chen, C.H., Poon, C.D., Terzis, A., Chen, A.D., Hutchison, J.E., Clark, M.R., Wignall, G., Londono, J.D., Superfine, R., Falvo, M., Johnson, C.S., Samulski, E.T., and Murray, R.W., J. Amer. Chem. Soc. 117 (50), 1253712548 (1995).10.1021/ja00155a017Google Scholar
5. Andres, R.P., Bielefeld, J.D., Henderson, J.I., Janes, D.B., Kolagunta, V.R., Kubiak, C.P., Mahoney, W.J., and Osifchin, R.G., Science 273 (5282), 16901693 (1996).10.1126/science.273.5282.1690Google Scholar
6. Middleton, A.A. and Wingreen, N.S., Phys. Rev. Lett. 71 (19), 31983201 (1993).10.1103/PhysRevLett.71.3198Google Scholar
7. Whan, C.B., White, J., and Orlando, T.P., Appl. Phys. Lett. 68 (21), 29962998 (1996).10.1063/1.116675Google Scholar
8. Murray, C.B., Norris, D.J., and Bawendi, M.G., J. Amer. Chem. Soc. 115 (19), 87068715 (1993).10.1021/ja00072a025Google Scholar
9. Kagan, C.R., Murray, C.B., and Bawendi, M.G., Phys. Rev. B-Condens Matter 54 (12), 86338643 (1996).10.1103/PhysRevB.54.8633Google Scholar
10. Empedocles, S.A., Norris, D.J., and Bawendi, M.G., Phys. Rev. Lett. 77 (18), 38733876 (1996).10.1103/PhysRevLett.77.3873Google Scholar
11. Klimov, V.I. and McBranch, D.W., Phys. Rev. B-Condens Matter 55 (19), 1317313179 (1997).10.1103/PhysRevB.55.13173Google Scholar
12. Hoheisel, W., Colvin, V.L., Johnson, C.S., and Alivisatos, A.P., J. Chem. Phys. 101 (10), 84558460 (1994).10.1063/1.468107Google Scholar
13. Micic, O.I., Jones, K.M., Cahill, A., and Nozik, A.J., J. Phys. Chem. B 102, 97919796 (1998).10.1021/jp981703uGoogle Scholar
14. Noolandi, J. and Hong, K.M., J. Chem. Phys. 70 (7), 32303236 (1979).10.1063/1.437912Google Scholar
15. Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Macklin, J.J., Trautman, J.K., Harris, T.D., and Brus, L.E., Nature 383 (6603), 802804 (1996).10.1038/383802a0Google Scholar
16. Efros, A.L. and Rosen, M., Phys. Rev. Lett. 78 (6), 11101113 (1997).10.1103/PhysRevLett.78.1110Google Scholar
17. Wang, Y. and Herron, N., J. Lumines. 70, 4859 (1996).10.1016/0022-2313(96)00043-9Google Scholar
18. Greenham, N.C., Peng, X.G., and Alivisatos, A.P., Phys. Rev. B-Condens Matter 54 (24), 1762817637 (1996).10.1103/PhysRevB.54.17628Google Scholar
19. Guyot-Sionnest, P., Shim, M., Matranga, C., and Hines, M., (submitted to Phys. Rev. Lett. November 1998).Google Scholar
20. Ben-Chorin, M., Ovadyahu, Z., and Pollak, M., Phys. Rev. B-Condens Matter 48, 15025–34 (1993).10.1103/PhysRevB.48.15025Google Scholar
21. Martinez-Arizala, G., Christiansen, C., Grupp, D.E., Markovic, N., Mack, A.M., and Goldman, A.M., Phys. Rev. B-Condens Matter 57, R6702 (1998).10.1103/PhysRevB.57.R670Google Scholar