Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T08:39:12.920Z Has data issue: false hasContentIssue false

A Chemical Approach to 3-D Lithographic Patterning of Si and Ge Nanocrystals

Published online by Cambridge University Press:  26 February 2011

I. D. Sharp
Affiliation:
idsharp@lbl.gov, LBNL and UC Berkeley, Materials Sciences Division, 1 Cyclotron Road 2R200, Berkeley, CA, 94720, United States, 510.486.4555
Q. Xu
Affiliation:
qxu@lbl.gov
D. O. Yi
Affiliation:
dioyi@berkeley.edu
C. Y. Liao
Affiliation:
cyliao@lbl.gov
J. W. Ager III
Affiliation:
jwager@lbl.gov
J. W. Beeman
Affiliation:
jwbeeman@lbl.gov
K. M. Yu
Affiliation:
kmyu@lbl.gov
J. T. Robinson
Affiliation:
jrobin@berkeley.edu
O. D. Dubon
Affiliation:
oddubon@berkeley.edu
D. C. Chrzan
Affiliation:
dcchrzan@berkeley.edu
E. E. Haller
Affiliation:
eehaller@lbl.gov
Get access

Abstract

Ion implantation into silica followed by thermal annealing is an established growth method for Si and Ge nanocrystals. We demonstrate that growth of Group IV semiconductor nanocrystals can be suppressed by co-implantation of oxygen prior to annealing. For Si nanocrystals, at low Si/O dose ratios, oxygen co-implantation leads to a reduction of the average nanocrystal size and a blue-shift of the photoluminescence emission energy. For both Si and Ge nanocrystals, at larger Si/O or Ge/O dose ratios, the implanted specie is oxidized and nanocrystals do not form. This chemical deactivation was utilized to achieve patterned growth of Si and Ge nanocrystals. Si was implanted into a thin SiO2 film on a Si substrate followed by oxygen implantation through an electron beam lithographically defined stencil mask. Thermal annealing of the co-implanted structure yields two-dimensionally patterned growth of Si nanocrystals under the masked regions. We applied a previously developed process to obtain exposed nanocrystals by selective HF etching of the silica matrix to these patterned structures. Atomic force microscopy (AFM) of etched structures revealed that exposed nanocrystals are not laterally displaced from their original positions during the etching process. Therefore, this process provides a means of achieving patterned structures of exposed nanocrystals. The possibilities for scaling this chemical-based lithography process to smaller features and for extending it to 3-D patterning is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cui, Y., Bjork, M. T., Liddle, J. A., Soennichsen, C., Boussert, B. and Alivisatos, A. P., Nano Lett. 4, 1093 (2004).Google Scholar
[2] Islam, M. A. and Herman, I. P., Appl. Phys. Lett. 80, 3823 (2002).Google Scholar
[3] Lu, N., Chen, X., Molenda, D., Naber, A., Fuchs, H., Talapin, D. V., Weller, H., Mueller, J., Lupton, J. M., Feldmann, J., Rogach, A. L. and Chi, L., Nano Lett. 4, 885 (2004).Google Scholar
[4] Jacobs, H. O. and Whitesides, G. M., Science 291, 1763 (2001).Google Scholar
[5] Liu, J., Lee, T., Janes, D. B., Walsh, B. L., Melloch, M. R., Woodall, J. M., Reifenberger, R. and Andres, R. P., Appl. Phys. Lett. 77, 373 (2000).Google Scholar
[6] Suh, K. Y., Khademhosseini, A., Eng, G. and langer, R., Langmuir 20, 6080 (2004).Google Scholar
[7] Meldrum, A., Buchanan, K. S., Hryciw, A. and White, W., Adv. Mater. 16, 31 (2004).Google Scholar
[8] Sun, K., Zhu, S., Fromknecht, R., Linker, G. and Wang, L. M., Mater. Lett. 58, 547 (2004).Google Scholar
[9] Berbezier, I., Karmous, A., Ronda, A., Stoica, T., Vescan, L., Geurt, R., Olzierski, A., Tsoi, E. and Nassiopoulou, A. G., J. Phys.: Conf. Ser. 10, 73 (2005).Google Scholar
[10] Valenta, J., Juhasz, R. and Linnros, J., Appl. Phys. Lett. 80, 1070 (2002).Google Scholar
[11] Sharp, I. D., Xu, Q., Liao, C. Y., Yi, D. O., Beeman, J. W., Liliental-Weber, Z., Yu, K. M., Zakharov, D. N., A., J. W. III., Chrzan, D. C. and Haller, E. E., J. Appl. Phys. 97, 124316 (2005).Google Scholar
[12] Biteen, J. S., Lewis, N. S., Atwater, H. A. and Polman, A., Appl. Phys. Lett. 84, 5389 (2004).Google Scholar
[13] Furukawa, S., Matsumura, H. and Ishiwara, H., Jpn. J. Appl. Phys. 11, 134 (1972).Google Scholar
[14] Ziegler, J. F., Biersack, J. P. and Littmark, W., The Stopping Range of Ions in Matter. (Pergamon Press, New York, 1985).Google Scholar