Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T16:45:51.782Z Has data issue: false hasContentIssue false

Chemical Bonding in Laves Phases Revisited: Atom Volumina in Cs-K System

Published online by Cambridge University Press:  01 February 2011

Yuri Grin
Affiliation:
grin@cpfs.mpg.de, Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany
Arndt Simon
Affiliation:
a.simon@fkf.mpg.de, MPI FKF, Stuttgart, Germany
Alim Ormeci
Affiliation:
ormeci@cpfs.mpg.de, Max-Planck Institute for Chemical Physics of Solids, Dresden, Germany
Get access

Abstract

Laves phases comprise a large group of intermetallic compounds with general composition AB2 and multi-component derivatives. The crystal structures of Laves phases are often regarded as closest packing of spheres. This observation, beginning with very early work on Laves phases, has led many researchers over the years, to emphasize the role of geometrical factors in the formation of Laves phases. In order to develop a firm understanding of chemical bonding in Laves phases and assess the importance of geometrical factors, we undertake a first-principles-electronic structure-based chemical bonding analysis for several representatives. As a first step towards this goal we concentrate on the K-Cs system which contains the Laves phase CsK2 and the hexagonal Cs6K7 compounds. In such alkali-metal-only compounds it is generally expected that chemical bonding effects are minimal. Atom volumina and charge transfer investigations reported here, however, suggest that even in alkali metal-alkali metal Laves phases chemical bonding plays a non-negligible role.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stein, F., Palm, M., Sauthoff, G., Intermetallics 12, 713 (2004).Google Scholar
2. Simon, A., Angew. Chem. 95, 94 (1983), Angew. Chem. Int. Ed. Engl. 22, 95 (1983).Google Scholar
3. Laves, F. and Wallbaum, H.J., Z. Anorg. Allg. Chem. 250, 110 (1942).Google Scholar
4. Simon, A. and Ebbinghaus, G., Z. Naturforsch. B 29, 616 (1974).Google Scholar
5. Simon, A., Braemer, W., Hillenkoetter, B. and Kullmann, H.-J., Z. Anorg. Allg. Chem. 419, 253 (1976).Google Scholar
6. Hafner, J., Phys. Rev. B 15, 617 (1977).Google Scholar
7. Hafner, J., Phys. Rev. B 19, 5094 (1979).Google Scholar
8. Bader, R.F.W., Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford (1999).Google Scholar
9. Koepernik, K. and Eschrig, H., Phys. Rev. B 59, 1743 (1999).Google Scholar
10. Perdew, J.P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
11. Kohout, M., program Basin, version 4.2, Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany (2007).Google Scholar
12. Vegard, L., Z.Phys. 5, 17 (1921).Google Scholar
13. Biltz, W., Raumchemie der festen Stoffe, Verlag Leopold Voss, Leipzig (1934).Google Scholar
14. Baranov, A., Kohout, M., Wagner, F.R., Yu., Grin and Bronger, W., Z. Kristallogr. 222, 527 (2007).Google Scholar
15. Bronger, W., Baranov, A., Wagner, F.R. and Kniep, R., Z. Anorg. Allg. Chem. 633, 2553 (2007).Google Scholar
16. Grosch, G.H. and Range, K.-J., J. Alloys Comp. 233, 30 (1996);Google Scholar
Grosch, G.H. and Range, K.-J., J. Alloys Comp. 233 39 (1996);Google Scholar
Grosch, G.H. and Range, K.-J., J. Alloys Comp. 235, 250 (1996).Google Scholar
17. Pearson, W.B., Acta Crystallogr. B 24, 7 (1968).Google Scholar
18. Pearson, W.B., The Crystal Chemistry and Physics of Metals and Alloys, Wiley-Interscience, New York, London, Sydney, Toronto (1972) p. 51 ff.Google Scholar
19. Kohout, M., Int. J. Quantum Chem. 97, 651 (2004).Google Scholar
20. Kohout, M., Wagner, F.R., Yu., Grin, Theor. Chem. Acc. 108 150 (2002).Google Scholar
21. Wagner, F.R., Bezugly, V., Kohout, M., Yu., Grin, Chem. Eur. J. 13 5724 (2007).Google Scholar