No CrossRef data available.
Published online by Cambridge University Press: 22 August 2014
Spin-polarized first-principles calculations have been conducted to study the electronic structures and magnetic properties of O and S functionalized zigzag aluminium nitride (AlN) nanoribbons. Chemical functionalization with O atoms at the edges strengthens the half-metallic properties of the AlN by adding new electronic states at the Fermi level for one spin-channel and widening the gap of the other. On the contrary, edge-termination with S atoms renders the AlN ribbon a semiconductor. Peierls instabilities towards the dimerization and trimerization of the doping atoms were observed.