Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T14:13:12.588Z Has data issue: false hasContentIssue false

A Chemical Perspective of GaN Polarity: The use of Hydrogen Plasma Dry Etching Versus NaOH Wet Etching to Determine Polarity

Published online by Cambridge University Press:  01 February 2011

Maria Losurdo
Affiliation:
Institute of Inorganic Metodologies and Plasmas -CNR, sect. of Bari via Orabona, 4- 70126 Bari, Italy
MariaMichela Giangregorio
Affiliation:
Institute of Inorganic Metodologies and Plasmas -CNR, sect. of Bari via Orabona, 4- 70126 Bari, Italy
Pio Capezzuto
Affiliation:
Institute of Inorganic Metodologies and Plasmas -CNR, sect. of Bari via Orabona, 4- 70126 Bari, Italy
Giovanni Bruno
Affiliation:
Institute of Inorganic Metodologies and Plasmas -CNR, sect. of Bari via Orabona, 4- 70126 Bari, Italy
Gon Namkoong
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Engineering, Microelectronic Research Center, 791 Atlantic Dr., Atlanta, GA 30332-0269, USA
W. Alan Doolittle
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Engineering, Microelectronic Research Center, 791 Atlantic Dr., Atlanta, GA 30332-0269, USA
April S. Brown
Affiliation:
Georgia Institute of Technology, School of Electrical and Computer Engineering, Microelectronic Research Center, 791 Atlantic Dr., Atlanta, GA 30332-0269, USA
Get access

Abstract

The use of dry hydrogen plasma etching is evaluated for determination of GaN polarity and critically compared to wet etching in NaOH. It is shown that hydrogen plasma etching is effective in revealing inversion domains (IDs) and some types of dislocations. This is because the surface morphology is unchanged by the hydrogen treatment, and, hence, the surface reactivity is not masked.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hellmann, E., MRS Internet J. Nitride Semicond. 3, 11 (1998)Google Scholar
[2] Stutzmann, M., Ambacher, O., Eickhoff, M., Karrer, U., Pimenta, A. Lima, Neuberger, R., Schalwig, J., Dimitrov, R., Schuck, P.J., Grober, R.D., Phys. Stat. Sol. B 228, 505 (2001)Google Scholar
[3] Ponce, F.A., Walle, C.G. Van de, Northrup, J.E., Phys. Rev. B 53, 7473 (1996)Google Scholar
[4] Yun, F., Huang, D., Reshchikov, M.A., King, T., Baski, A.A., Litton, C.W., Jasinski, J., Liliental-Weber, Z., Visconti, P., Morkoc, H., Phys. Stat. Sol. B 228, 543 (2001)Google Scholar
[5] Namkoong, G., Doolittle, W.A, Brown, A.S., Losurdo, M., Capezzuto, P., Bruno, G., J. Appl. Phys. 91, 2499 (2002)Google Scholar
[6] Losurdo, M., Capezzuto, P., Bruno, G., Namkoong, G., Doolittle, W.A, Brown, A.S., J. Appl. Phys. 91, 2508 (2002)Google Scholar
[7] Downs, A.J., Pulham, C.R., Chem. Soc. Reviews 175 (1994).Google Scholar
[8] Sun, C.J., Kung, P., Saxler, A., Ohsato, H., Bigan, E., Razeghi, M., J. Appl. Phys. 76, 236 (1994)Google Scholar
[9] Jones, K.M., Visconti, P., Yun, F., Baski, A.A., Morkoc, H., Appl. Phys. Lett. 78, 2497 (2001)Google Scholar
[10] Shen, X.Q., Ide, T., Cho, S.H., Shimizu, M., Hara, S., Okumura, H., Appl. Phys. Lett. 77, 4013 (2000)Google Scholar