Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-14T17:21:20.700Z Has data issue: false hasContentIssue false

Chemical Precipitation Synthesis of Nano-Crystalline Mg(OH)2

Published online by Cambridge University Press:  20 December 2012

A. Medina*
Affiliation:
UMSNH, Instituto de Investigaciones Metalúrgicas, Edificio U Ciudad Universitaria, C.P. 58040, Morelia, Michoacán, México SEP-DGEST-IT de Tlalnepantla, Av. Tecnológico s/n, Col. la Comunidad, Tlalnepantla de Baz, Edo México, 54070, México.
L. Béjar
Affiliation:
UMSNH, Facultad de Ingeniería Mecánica, Edificio W Ciudad Universitaria, C.P. 58040, Morelia, Michoacán, México
G. Herrera-Pérez
Affiliation:
Departamento de Ingeniería en Materiales, Instituto Tecnológico Superior de Irapuato (ITESI) Carretera Irapuato-Silao Km. 12.5, El Copal, Irapuato, Guanajuato. C.P. 36821, México
*
Get access

Abstract

Magnesium hydroxide (Mg(OH)2) nanoparticles were synthesized by chemical precipitation synthesis method. The influence of the nano-sized Mg(OH)2 on the structural modification was evaluated. The formation of Mg(OH)2 crystals were evaluated by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The particle size and morphology of Mg(OH)2was confirmed by high resolution transmission electron microscopy (HRTEM). The crystalline structure of nanoparticles was characterized by fast Fourier transform (FFT) and X-Ray diffraction (XRD), like analytical tools.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nie, S. and Emory, S. R., Science, 275, 1102 (1997).CrossRefGoogle Scholar
Wang, C., Niflyn, N. and Larger, R., Adv. Mater, 16, 1074 (2004).CrossRefGoogle Scholar
Shipway, A. N. and Willner, I., Chem. Commun. 20, 2035 (2001).CrossRefGoogle Scholar
Ziolo, R. F., Giannelis, E. P., Mehrotra, V. and Huffman, D. R., Science, 257, 219 (1992).CrossRefGoogle Scholar
Buemann, M., Colfin, H., Walsh, D. and Mann, S., Adv. Mater. 10, 237 (1998).Google Scholar
Ding, Y., Zhang, G., Wu, H., Hai, B., Wang, L. and Qian, Y., Chem. Mater. 13, 435 (2001).CrossRefGoogle Scholar
Anheuser Busch Inc., US Patent US3839320-A, (1974).Google Scholar
Mitsubishi Rayon Co. Ltd. (MITR-C). Japan Patent P52105653-A, (1977).Google Scholar
Wang, X. J., Qiao, X. L., Chen, J. G., Wang, H. S. and Ding, S. Y., J. Ceram. 24, 39 (2003).Google Scholar
Fang, M., Chen, J. H., Xu, X. L., Yang, P. H.andHildebrand, H. F., Int. J. Anti-microb. Agents, 27, 513 (2006).CrossRefGoogle Scholar
Dong, C., Song, D., Cairney, J., Maddan, O. L., Heand, G. Deng, Y., Mat. Res. Bul. 46, 576 (2011).CrossRefGoogle Scholar
Li, Y., Sui, M., Ding, Y., Zhang, G., Zhuang, J. and Wang, C., Adv. Mater. 12, 818 (2000).3.0.CO;2-L>CrossRefGoogle Scholar
Yu, J. C., Xu, A. W., Zhang, L. Z., Song, R. Q. and Wu, L., J. Phys. Chem. B108, 64 (2004).CrossRefGoogle Scholar
Yan, C. L., Xue, D. F., Zou, L. J., Yan, X. X. and Wang, W., J. Crys. Grow. 282, 448 (2005).CrossRefGoogle Scholar
Zhang, S. M. and Zeng, H. C. Chem. Mater. 21, 871 (2009).CrossRefGoogle Scholar
Redform, S. A. and Wood, B. I., Am. Miner. 77, 1129 (1992).Google Scholar
Fathima Parveen, M., Umapathy, S., Dhanalakshmi, V., Anbarasan, R.. Nano Brief Reports and Reviews, 4, 147 (2009).Google Scholar
Murphy, C. J., Science, 298, 2139 (2002).CrossRefGoogle ScholarPubMed
Wu, X. F., Hu, G. S., Wang, B. B. and Yang, Y. F., J. Cryst. Growth, 310, 457 (2008).CrossRefGoogle Scholar