Published online by Cambridge University Press: 10 February 2011
Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system. Laminar and equiaxial microcrystalline morphologies were obtained for superstoichiometric and substoichiometric zirconium carbide; respectively, allowing cursory metallographic identification of composition. Observed reductions in film density associated with zirconium carbide films that contain additional free carbon or excess zirconium are reported. These changes in film density were found to be consistent with compositional changes. An apparently linear relationship (correlation of 0.99) between methane flow in this chemical vapor deposition system and zirconium carbide stoichiometry in the substoichiometric range deposited above ZrC0.61 has been observed.