Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T03:41:01.672Z Has data issue: false hasContentIssue false

Chemically Robust Phthalocyanines: Photosensitizer and Electron Shuttle in Solid State Dye Sensitized Solar Cells

Published online by Cambridge University Press:  11 June 2015

Patrick J. Dwyer
Affiliation:
Center for Computational Research, Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, U.S.A
Rory J. Vander Valk
Affiliation:
Center for Computational Research, Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, U.S.A
Stephen P. Kelty
Affiliation:
Center for Computational Research, Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, U.S.A
Get access

Abstract

A completely solid state dye sensitized solar cell (DSSSC) is proposed in which chemically robust phthalocyanine (Pc) sensitizers, F16ZnPc and F40ZnPc, are sandwiched between n-TiO2 and p-NiO. While the energy conversion efficiencies of conventional Grätzel cells are continually increasing, the DSSSC design effectively solves the long term stability issues of the volatile liquid electrolyte. Through analysis of the electronic structure of the Pc|semiconductor systems, the free energy associated with hole injection into the valence band of NiO upon photoexcitation of the sensitizer and electron injection into the conduction band of TiO2 from the reduced form of the sensitizer as well as the competing charge recombination processes are calculated. Thermodynamically, the charge injection processes are found to be favored over the undesired charge recombination processes. These findings suggest promising energy conversion for the NiO|Pc|TiO2 DSSSC.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

O'Regan, B. and Gratzel, M., Nature, 353, 737, (1991).CrossRefGoogle Scholar
Grätzel, M., J. Photochem. PhotoBiol. C, 4, 145, (2003).CrossRefGoogle Scholar
Hagfeldt, A., et al., Chem. Rev., 110, 6595, (2010).CrossRefGoogle Scholar
Mathew, S., et al., Nature Chemistry, 6, 242, (2014).CrossRefGoogle Scholar
He, J., et al., J. Phys. Chem. B, 103, 8940, (1999).CrossRefGoogle Scholar
He, J., et al., Sol. Energy Mater. Sol. Cells, 62, 265, (2000).CrossRefGoogle Scholar
Ileperuma, O. A., Mater. Technol., 28, 65, (2013).CrossRefGoogle Scholar
Yanagida, S., Yu, Y. and Manseki, K., Acc. Chem. Res., 42, 1827, (2009).CrossRefGoogle Scholar
Tennakone, K., et al., Semicond. Sci. Technol., 10, 1689, (1995).CrossRefGoogle Scholar
Ragoussi, M.-E., Ince, M. and Torres, T., Eur. J. Org. Chem., 2013, 6475, (2013).CrossRefGoogle Scholar
Liao, M.-S., et al., J. Chem. Theory Comput., 1, 1201, (2005).CrossRefGoogle Scholar
Moons, H., et al., Inorg. Chem., 49, 8779,CrossRefGoogle Scholar
Odobel, F., et al., Acc. Chem. Res., 43, 1063, (2010).CrossRefGoogle Scholar
Zhang, T., et al., J. Phys. Chem. C, Ahead of Print, (2014).Google Scholar
Schmidt, M. W., et al., J. Comput. Chem., 14, (1993).CrossRefGoogle Scholar
Becke, A. D., J. Chem. Phys., 98, 5648, (1993).CrossRefGoogle Scholar
Lee, C., Yang, W. and Parr, R. G., Phys. Rev. B 37, 785, (1988).CrossRefGoogle Scholar
Stephens, P. J., et al., J. Phys. Chem., 98, 11623, (1994).CrossRefGoogle Scholar
Frisch, M. J., Pople, J. A. and Binkley, J. S., J. Chem. Phys., 80, 3265, (1984).CrossRefGoogle Scholar
Rassolov, V. A., et al., J. Chem. Phys., 109, 1223, (1998).CrossRefGoogle Scholar
Dwyer, P., et al., J. Phys. Chem. A, 118, 11583, (2014).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Comput. Mat. Sci., 6, 15, (1996).CrossRefGoogle Scholar
Kresse, G. and Hafner, J., Phys. Rev. B, 47, 558, (1993).CrossRefGoogle Scholar
Rohrbach, A., Hafner, J. and Kresse, G., J. Phys.: Condens. Matter, 15, 979, (2003).Google Scholar
Blochl, P. E., Jepsen, O. and Andersen, O. K., Phys. Rev. B: Condens. Matter, 49, 16223, (1994).CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B: Condens. Matter Mater. Phys., 59, 1758, (1999).CrossRefGoogle Scholar