Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T07:17:05.219Z Has data issue: false hasContentIssue false

Chemical-Mechanical Planarization of the Polymer Interlayer Dielectrics

Published online by Cambridge University Press:  10 February 2011

S. P. Murarka*
Affiliation:
SRC Center for Advanced Interconnect Science and Technology and Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180-3590, smurarka@unix.cie.rpi.edu
Get access

Abstract

Low dielectric constant polymers are being investigated for application as interlayer dielectrics with copper as the metal in a multilevel interconnect scheme. Processing of such structures willrequire the use of chemical-mechanical planarization (CMP) technologies for both the metal and the dielectric. Polymers are comparatively quite soft. They are not readily attacked by chemicals thus requiring more mechanical component dependency compared to the chemical component in the CMP. Polymers are thus prone to scratching during CMP which may lead to reliability problems both from materials and electrical points of view. In this presentation we will discuss the use of chemical engineering and chemistry principles to optimize the polishing process to minimize or eliminate the scratching and other mechanical damages. The role of CMP parameters such as velocity, pressure, particle size, viscosity, and chemistry will be discussed to elucidate the emerging “scratch-free”-CMP-concept.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Beyer, K., Guthrie, W., Markarewicz, S., Mendel, E., Patrick, W., Perry, K., Pliskin, W., Riseman, J., Schaible, P., and Standly, C., IBM Corp., U.S. Patent 4, 944, 836, July 31, 1990.Google Scholar
2 Kaanta, C.W., Bombardier, S.G., Cote, W.J., Hill, W.R., Kerszykowski, G., Landis, H.S., Poindexter, D.J., Pollard, C.W., Ross, G.H., Ryan, J.G., Wolff, S., and Cronin, J.E., Proc. VIII IEEE VMIC, Cat. #91TH0359-0 (IEEE, NY, 1991) p. 144.Google Scholar
3 Murarka, S.P., Steigerwald, J., and Gutmann, R.J., MRS Bulletin XVIII, 46 (1993).Google Scholar
4 Price, D.T., Gutmann, R.J., and Murarka, S.P., Thin Solid Films 308–309, 523 (1997).Google Scholar
5 Kaufman, F.B., Thompson, D.B., Broadie, R.E., Jaso, M.A., Guthrie, W.L., Pearsons, D.J., and Small, M.B., J. Electrochem. Soc. 138, 3460 (1991).Google Scholar
6 Luther, B. et al, in Proc. 1993 VMIC, Univ. ot South Florida, Tampa, (1993), p. 15.Google Scholar
7 Paraszczak, J., Edelstein, D., Cohen, S., Babich, E., and Hummel, J., in Proc. 1993 IEEEIEDM, (IEEE, Piscataway, NJ 1993), p. 261.Google Scholar
8 Pintchovski, F., in Proc. 1994 IEEE-IEDM, (IEEE, Piscataway, NJ 1994), p. 97.Google Scholar
9 Cho, J.-S., Kang, H.-K., Ryu, C., and Wong, S.S., in Proc. IEEE-IEDM, (IEEE, Piscataway, NJ 1993), p. 265.Google Scholar
10. Ueno, K., Ohto, K., and Tsunerari, K., in Proc. Adv. Mat. For ULSI Applications, Mat. Res. Soc., Pittsburgh (1994).Google Scholar
11. Gutmann, R.J., Chow, T. Paul, Lakshminarayanan, S., Price, D.T., Steigerwald, J.M., You, L., and Murarka, S.P., Thin Solid Films 270, 472 (1995).Google Scholar
12. Licari, J.C. and Hughes, L.A., “Handbook of Polymer Coatings for Electronics, Chemistry, Technology, and Applications,” Noyes, Park Ridge, NJ (1990).Google Scholar
13. Ting, C.-H. and Seidel, T.E., Mat. Res. Soc. Symp. Proc. 381, 3 (1995).Google Scholar
14. Ryan, E.T., McKerrow, A.J., Leu, J., and Ho, P.S., MRS Bulletin 22, 49 (1997).Google Scholar
15. Cook, L.M., J. Non-Cryst. Solids 120, 152 (1990).Google Scholar
16. Tomozawa, M., Yang, K., Li, H., and Murarka, S.P., Mat. Res. Soc. Symp. Proc. 337, 89 (1994).Google Scholar
17. Kallingal, C.G., Duquette, D.J., and Murarka, S.P., J. Electrochem. Soc. 145, 2074 (1998).Google Scholar
18. Blasius, H., Angew, Z.. Math. Phys. 50, (1908).Google Scholar
19. Yang, K., Gutmann, R.J., Murarka, S.P., Stonebraker, E., and Atkins, H., Mats. Res. Soc. Symp. Proc. 337, 145 (1994).Google Scholar
20. Yang, K., Murarka, S.P., and Gutmann, R.J., to be published.Google Scholar
21. Saino, C., Ph.D.Thesis, RPI, Troy, NY (1998).Google Scholar
22.Surfactants”, Ed. Thadros, Th. F., Academic Press, NY (1984).Google Scholar
23. Neirynck, J.M., M.S. Thesis, RPI, Troy, NY (1996).Google Scholar
24. S.P. Beaudoin et al. Ind. & Chem. Eng. Res. 37, 3307 (1995).Google Scholar
25. Yang, G.-R., Zhao, Y.-P., Neirynck, J.M., Murarka, S.P., and Gutmann, R.J., J. Electrochem. Soc. 144, 3249 (1997).Google Scholar
26. Murarka, S.P., Paper presented at the CMP Workshop, Lake Placid, NY (1996).Google Scholar
27. Runnels, S.R., J. Electrochem. Soc. 141, 1900 (1994).Google Scholar
28. Sundararajan, S., M.S. Thesis, RPI, Troy, NY (1997).Google Scholar
29. Permana, D., Murarka, S.P., Lee, M.G., and Beilin, S.I., Electrochem. Soc. Proc. 96–22, 206 (1997).Google Scholar