Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T14:11:58.051Z Has data issue: false hasContentIssue false

Co2+ ions-containing ordered silica monoliths: Influence of the copolymer P123/Si and Co2+ ions/Si ratios on the organization of the monoliths

Published online by Cambridge University Press:  22 June 2011

Emilie Delahaye
Affiliation:
Université Paris-Sud, UMR 8182 ICMMO - Equipe de Chimie Inorganique, 15 rue Georges Clémenceau, 91405 Orsay, France
Merwen Aouadi
Affiliation:
Université Paris-Sud, UMR 8182 ICMMO - Equipe de Chimie Inorganique, 15 rue Georges Clémenceau, 91405 Orsay, France
Dominique Durand
Affiliation:
Université Paris-Sud, UMR 8619 Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Bâtiment 430,91405 ORSAY, France
Patricia Beaunier
Affiliation:
Université Pierre et Marie Curie - Paris VI, CNRS, Laboratoire de Réactivité de Surface-UMR 7197, 3 rue Galilée, 94200 Ivry, France
Giulia Fornasieri
Affiliation:
Université Paris-Sud, UMR 8182 ICMMO - Equipe de Chimie Inorganique, 15 rue Georges Clémenceau, 91405 Orsay, France
Anne Bleuzen*
Affiliation:
Université Paris-Sud, UMR 8182 ICMMO - Equipe de Chimie Inorganique, 15 rue Georges Clémenceau, 91405 Orsay, France
Get access

Abstract

Among the different possibilities to control the size, the shape and the spatial organization of nano-objects, one consists in the use of the ordered mesoporosity of silica matrices as nanoreactors for their synthesis. This strategy has been used to elaborate Prussian Blue Analogues (PBA) exhibiting photomagnetic properties. Since the synthesis of these nanocomposites begins with the obtention of mesoporous silica monoliths containing Co2+ ions, we focus in this paper on the effect of the quantity of Co2+ ions and the amount of surfactant on the nanostructuration of these monoliths.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sato, O., Iyoda, T., Fujishima, A., Hashimoto, K., Science 272, 704 (1996).10.1126/science.272.5262.704Google Scholar
2. Verdaguer, M., Science 272, 698, (1996).Google Scholar
3. Bleuzen, A., Lomenech, C., Escax, V., Villain, F., Varret, F., Cartier dit Moulin, C., Verdaguer, M., JACS 122, 6648 (2000).Google Scholar
4. Coronado, E., Gimènez-López, M. C., Korzeniak, T., Levchenko, G., Romero, F. M., Segura, A., Garcia-Baonza, V. N, Cezar, J. C., de Groot, F. M. F., Milner, A., Paz-Pasternak, M., JACS 130, 15519 (2008).Google Scholar
5. Vaucher, S., Fielden, J., Li, M., Dujardin, E., Mann, S., Nano Letters 2, 225 (2002).Google Scholar
6. Catala, L., Gacoin, T., Boilot, J. P., Rivière, É., Paulsen, C., Lhotel, E., Mallah, T., Adv. Mater. 15, 826 (2003).Google Scholar
7. Yamada, M., Arai, M., Kurihara, M., Sakamoto, M., Miyake, M., JACS 126, 9482 (2004).Google Scholar
8. Uemura, T., Ohba, M., Kitagawa, S., Inorg. Chem. 43, 7339 (2004).Google Scholar
9. Catala, L., Mathoniere, C., Gloter, A., Stephan, O., Gacoin, T., Boilot, J.-P., Mallah, T., Chem. Commun. 6, 746 (2005).10.1039/B415157GGoogle Scholar
10. Johansson, A., Widenkvist, E., Lu, J., Boman, M., Jansson, U., Nano Letters 5, 1603 (2005).Google Scholar
11. Fornasieri, G., Bleuzen, A., Angew. Chem. Int. Edit. 47, 7750 (2008).Google Scholar
12. Durand, P., Fornasieri, G., Baumier, C., Beaunier, P., Durand, D., Riviere, E., Bleuzen, A., J. Mater. Chem. 20, 9348 (2010).Google Scholar
13. Fornasieri, G., Aouadi, M., Durand, P., Beaunier, P., Riviere, E., Bleuzen, A., Chem. Commun. 46, 8061 (2010).Google Scholar
14. Folch, B., Guari, Y., Larionova, J., Luna, C., Sangregorio, C., Innocenti, C., Caneschi, A., Guerin, C., New J. Chem. 32, 273 (2008).Google Scholar
15. Soni, S. S., Brotons, G., Bellour, M., Narayanan, T., Gibaud, A., J. Phys. Chem. B 110, 15157 (2006).10.1021/jp062159pGoogle Scholar
16. El-Safty, S. A., J. Porous Mater., 15, 369 (2008).Google Scholar
17. El-Safty, S. A.,;Hanaoka, T., Chem. Mater. 16, 384 (2004).10.1021/cm034282oGoogle Scholar
18. Fall, S., Kulij, M., Gibaud, A. Journal of Physics: Condensed Matter 22, 474005 (2010).Google Scholar
19. Grosso, D., Balkenende, A. R., Albouy, P. A., Ayral, A., Amenitsch, H., Babonneau, F., Chem. Mater. 13, 1848 (2001).Google Scholar