Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T01:08:08.642Z Has data issue: false hasContentIssue false

Coherency Strain and High Strength at High Temperature

Published online by Cambridge University Press:  10 February 2011

M. E. Brenchley
Affiliation:
Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH, England, M.Brenchley@surrey.ac.uk
D. J. Dunstan
Affiliation:
Department of Physics, Queen Mary and Westfield College, London El 4NS, England
P. Kidd
Affiliation:
Department of Materials Science and Engineering, University of Surrey, Guildford, Surrey GU2 5XH, England
A. Kelly
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ, England
Get access

Abstract

We propose an athermal strengthening mechanism for high-temperature structural materials in which large coherency strains are built in to a layered structure in order to prevent dislocation mulitplication mechanism from functioning. A practical model system is provided by semiconductor strained-layer superlattices of InGaAs grown on InP. We report results from highresolution X-ray diffraction and from direct tensile testing which provide evidence for athermal strengthening. A discussion of methods of micro-mechanical testing is also included.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kelly, A. and Macmillan, N.J., Strong Solids, Oxford University Press, 1986.Google Scholar
2. Lehoczky, S.L., Phys. Rev. Lett. 41, p. 1814 (1978); J. Appl. Phys. 49, p. 5479 (1978).Google Scholar
3. Kelly, A., Design of a High Temperature Structural Material in 2nd International Conference on Advanced Materials and Technology. New Compo '91 Hyogo. Hyogo Japan 205 (1991).Google Scholar
4. Fitzgerald, E.A., Mat. Sci. Reports 7, p. 87 (1991).Google Scholar
5. Dunstan, D.J., Kidd, P., Howard, L.K. and Dixon, R.H., Appl. Phys. Lett. 59, p. 3,390 (1991).Google Scholar
6. Dunstan, D.J., Kidd, P., Beanland, R., Sacedán, A., Calleja, E., Gonzdilez, L., Gonzdilez, Y., and Pacheco, F.J., Mat. Sci. and Technol. 12, p. 181 (1996).Google Scholar
7. Lourenço, M., Homewood, K.P. and Considine, L., Mat. Sci. and Eng. B28, p. 507 (1994).Google Scholar
8. Hull, R., Bean, J.C., Bahnck, D., Peticolas, L.J., Short, K.T. and Unterwald, F.C., J. Appl. Phys. 70, p. 2052 (1991).Google Scholar
9. Beanland, R., J. Appl. Phys. 72, p. 4031 (1992).Google Scholar
10. Herzog, H.-J. and Kasper, E., J. Cryst. Growth 144, 177 (1994).Google Scholar
11. See e.g. Adesida, I. in Properties of Lattice-Matched and Strained Indium Gallium Arsenide, edited by Bhattacharya, P., INSPEC WEE, London, 1993, p.250, and K. Matsushita, S. Adachi and H.L. Harmagel in Properties of Indium Phosphide, INSPEC IEE, London, 1991, p. 333.Google Scholar
12. Swaminathan, V. and Copley, S.M., J. Am. Ceram. Soc. 58, 482 (1975).Google Scholar
13. Dunstan, D.J., Kidd, P., Fewster, P.F., Andrew, N.L., Grey, R., David, J.P.R., González, L., González, Y., Sacedán, A. and González-Sanz, F., Appl. Phys. Lett. 65, p. 839 (1994).Google Scholar
14. Sacedón, A., Gonzdilez-Sanz, F., Calleja, E., Muñoz, E., Molina, S.I., Pacheco, F.J., Araújo, D., Garcia, R., Lourenço, M., Yang, Z., Kidd, P. and Dunstan, D.J., Appl. Phys. Lett. 66, p. 3334 (1995).Google Scholar