Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T10:12:04.604Z Has data issue: false hasContentIssue false

Coherent Anti-Stokes Raman Scattering Measurements of Group V Hydride and Trimethylgallium Decomposition in Organometallic Vapor Phase Epitaxy

Published online by Cambridge University Press:  25 February 2011

R. Löckerath
Affiliation:
I. Physik. Inst., RWTH Aachen, Sommerfeldstr., Turm 28, D-5100 Aachen, Federal Republic of Germany
H. J. Koss
Affiliation:
I. Physik. Inst., RWTH Aachen, Sommerfeldstr., Turm 28, D-5100 Aachen, Federal Republic of Germany
P. Tommack
Affiliation:
I. Physik. Inst., RWTH Aachen, Sommerfeldstr., Turm 28, D-5100 Aachen, Federal Republic of Germany
W. Richter
Affiliation:
Inst. f. Festkörperphysik, TU Berlin, Hardenbergstr. 36, D-1000 Berlin 12, Federal Republic of Germany
P. Balk
Affiliation:
Inst. of Semicond. Electronics, RWTH Aachen, D-5100 Aachen, Federal Republic of Germany
Get access

Abstract

The thermal decomposition of AsH3 and TMG is measured insitu under different experimental conditions. Simultaneously the production of H2, CH4 and C2H6 is observed. The data indicate a situation where AsH3 is only partially decomposed at the GaAs surface. The hydrogen released removes additional CH3 groups from the trimethyl-gallium (TMG) molecule, enhances the decomposition of TMG, and thereby forms methane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuech, T.F., Mat. Sci. Reports 2 (1987) 1.Google Scholar
2. Anacona, J.R., Davies, P.B., and Johnson, S.A., Molecular Physics 56 (1985) 989.Google Scholar
3. Monteil, Y., Favre, R., Raffin, P., Bouix, J., Vaille, M., and Gibart, P., J. Crystal Growth, in press.Google Scholar
4. Yoshida, M., Watanabe, H., and Uesugi, F., J. Electrochem. Soc. 132 (1985) 667.Google Scholar
5. Koppitz, M., Vestavik, O., Pletschen, W., Mircea, A., Heyen, M., and Richter, W., J. Crystal Growth 77 (1984) 136.Google Scholar
6. Dapkus, P.D., DenBaars, S.P., Chen, Qisheng, and Maa, B.Y., Proc. NATO-Workshop St. Andrews, Scotland, 1988, in press.Google Scholar
7. Larsen, C.A., Buchan, N.I., and Stringfellow, G.B., Appl. Phys. Lett. 52 (1988) 480.Google Scholar
8. DenBaars, S. D., Maa, B. Y., Dapkus, P.D., Danner, A.D., and Lee, H.C., J. Crystal Growth 77 (1986) 188.Google Scholar
9. Leys, M.R., Chemtronics 2 (1987) 155.Google Scholar
10. Nishizawa, J. and Kurabayashi, T., J. Electrochem. Soc. 130 (1983) 413.Google Scholar
11. Butler, J.E., Bottka, N., Sillmon, R.S. and Gaskill, D.K., J. Crystal Growth 77 (1986) 163.Google Scholar
12. Lee, P.W., Omstead, T.R., McKenna, D.R., and Jensen, K.F., J. Crystal Growth 85 (1987) 165.Google Scholar
13. Donnelly, V.M., Karlicek, R.F., J.Appl.Phys. 53 (1982) 6399.Google Scholar
14. Lückerath, R., Balk, P., Fischer, M., Grundmann, D., Hertling, A., and Richter, W., Chemtronics 2 (1987) 199.Google Scholar
15. Lückerath, R., Tommack, P., Hertling, A., Koß, H. J., Balk, P., Jensen, K.F., and Richter, W., J.Crystal Growth 93(1988)151.Google Scholar
16. Lückerath, R., Richter, W., Jensen, K.F., Proc. NATO-Workshop St. Andrews, Scotland, 1988, in press.Google Scholar
17. Tommack, P., Lückerath, R., Koß, H.J., Richter, W., to be publ.Google Scholar