Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T09:48:44.888Z Has data issue: false hasContentIssue false

Cohesive Energies of Be and Mg Chalcogenides

Published online by Cambridge University Press:  10 February 2011

M. Porcu
Affiliation:
INFM and Dipartimento di Scienze Fisiche dell'Universita' di Cagliari 1–09124 Cagliari-, ITALY
G. Satta
Affiliation:
INFM and Dipartimento di Scienze Fisiche dell'Universita' di Cagliari 1–09124 Cagliari-, ITALY
F. Casula
Affiliation:
INFM and Dipartimento di Scienze Fisiche dell'Universita' di Cagliari 1–09124 Cagliari-, ITALY
G. Mula
Affiliation:
INFM and Dipartimento di Scienze Fisiche dell'Universita' di Cagliari 1–09124 Cagliari-, ITALY
Get access

Abstract

We have calculated the cohesive energies, bulk moduli and equilibrium volumes of Be and Mg oxides, sulphides and selenides, in both zincblende and rocksalt structures. The calculations have been performed with the Discrete-Variational-Method (DVM), a real space first-principle local-density-functional approach. Comparisons with the experiment and with other first-principles approaches show that the electronic and structural properties of solids can be computed with DVM at least as accurately as with the usual plane-wave pseudopotential methods. This result is especially interesting in view of the fact that an order N implementation of DVM, based on the W. Yang's divide and conquer method, has been recently developed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. e.g. Yin, M.T. and Cohen, M.L., Phys. Rev. B26, 5668 (1982).Google Scholar
2. For a review on LDA calculations see, e.g., Jones, R.O and Gunnarson, O., Rev. Mod. Phys. 61, 689 (1989).Google Scholar
3. Yang, W., Phys. Rev. Lett. 66, 1438 (1991). See also ref. 12 and references therein.Google Scholar
4. Yang, J., Toigo, F. and Kelin, W., Phys. Rev. B50, 7915 (1994) and references therein.Google Scholar
5. Boettger, J.C. and Wills, J.M., Phys. Rev. B 54, 8965 (1996).Google Scholar
6. Porcu, M., Satta, G., Casula, F. and Mula, G., to be publishedGoogle Scholar
7. Ellis, D.E. and Painter, G.S., Phys. Rev. B2, 2887 (1970).Google Scholar
8. Hamann, D.R., Schlüter, M. and Chiang, C., Phys. Rev. 43, 1494 (1979).Google Scholar
9. Yang, J., Kelin, W., Casula, F. and Mula, G., Phys. Rev. B47, 4025 (1993).Google Scholar
10. Delley, B., Ellis, D.E., Freeman, A.J., Baerends, E.J. and Post, D., Phys. Rev. B27, 2132 (1983).Google Scholar
11. Mula, G., Angius, C., Casula, F., Maxia, G., Porcu, M. and Yang, J., Mat. Res. Soc. Proc. 408, 3 (1996).Google Scholar
12. Yang, W. and Lee, T., J. Chem. Phys. 163, 5674 (1993), andGoogle Scholar
Yang, W., Phys. Rev. B56, 9294 (1997).Google Scholar
13. As quoted in Van Camp, P.E., Van Doren, V.E. and Martins, J.L., Phys. Rev. B55, 775 (1997)Google Scholar
For MgO, however, no phase transition has been found up to pressures of 227 GPa: see Duffy, T.S., Hemley, R.J., and Mao, H., Phys Rev. Lett. 74, 1371 (1995).Google Scholar
14. Uesugi, K., Obinata, T. and Suemune, I., Appl. Phys. Lett. 68, 844 (1996).Google Scholar
15. Lee, Sun-Ghil and Chang, K.J., Phys. Rev. B 52, 1918 (1995).Google Scholar
16. Muñoz, A., Rodríguez-Hernández, P. and Mujica, A., Phys. Rev. B 54, 11861 (1996).Google Scholar
17. Gonzáles-Díaz, M., Rodríguez-Hernández, P. and Muñoz, A., Phys. Rev. B 55, 14043 (1997).Google Scholar
18. Van Camp, P.E., Van Doren, V.E. and Martins, J.L., Phys. Rev. B55, 775 (1997)Google Scholar