Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T10:08:18.119Z Has data issue: false hasContentIssue false

Colloidal PbS Nanosheets with Tunable Energy Gaps

Published online by Cambridge University Press:  15 May 2015

Zhoufeng Jiang
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403, U.S.A. Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, U.S.A.
Simeen Khan
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403, U.S.A.
Shashini Premathilake
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403, U.S.A. Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, U.S.A.
Ghadendra Bhandari
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403, U.S.A.
Kamal Subedi
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403, U.S.A.
Yufan He
Affiliation:
Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, U.S.A.
Matthew Leopold
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403, U.S.A.
Nick Reilly
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403, U.S.A.
Peter Lu
Affiliation:
Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, U.S.A. Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, U.S.A.
Alexey Zayak
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403, U.S.A. Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, U.S.A.
Liangfeng Sun
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403, U.S.A. Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, U.S.A.
Get access

Abstract

Ultrathin colloidal PbS nanosheets are synthesized using organometallic precursors with chloroalkane cosolvents, resulting in tunable thicknesses ranging from 1.2 nm to 4.6 nm. We report the first thickness-dependent photoluminescence spectra from lead-salt nanosheets. The one-dimensional confinement energy of these quasi-two-dimensional nanosheets is found to be proportional to 1/L instead of 1/L2 (L is the thickness of the nanosheet), which is consistent with results calculated using density functional theory as well as tight-binding theory.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 2008, 8, 34883492.CrossRefGoogle ScholarPubMed
Choi, J. J.; Lim, Y. F.; Santiago-Berrios, M. B.; Oh, M.; Hyun, B. R.; Sun, L.; Bartnik, A. C.; Goedhart, A.; Malliaras, G. G.; Abruna, H. D.; Wise, F. W.; Hanrath, T. PbSe nanocrystal excitonic solar cells. Nano Lett. 2009, 9, 37493755.CrossRefGoogle ScholarPubMed
Sun, L.; Choi, J. J.; Stachnik, D.; Bartnik, A. C.; Hyun, B.; Malliaras, G. G.; Hanrath, T.; Wise, F. W. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nat Nano 2012, 7, 369373.CrossRefGoogle ScholarPubMed
Kovalenko, M. V.; Scheele, M.; Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009, 324, 14171420.CrossRefGoogle ScholarPubMed
Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; Chou, K. W.; Fischer, A.; Amassian, A.; Asbury, J. B.; Sargent, E. H. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765771.CrossRefGoogle ScholarPubMed
Zhang, H.; Hu, B.; Sun, L.; Hovden, R.; Wise, F. W.; Muller, D. A.; Robinson, R. D. Surfactant Ligand Removal and Rational Fabrication of Inorganically Connected Quantum Dots. Nano Lett. 2011, 11, 53565361.CrossRefGoogle ScholarPubMed
Schliehe, C.; Juarez, B. H.; Pelletier, M.; Jander, S.; Greshnykh, D.; Nagel, M.; Meyer, A.; Foerster, S.; Kornowski, A.; Klinke, C.; Weller, H. Ultrathin PbS sheets by two-dimensional oriented attachment. Science 2010, 329, 550553.CrossRefGoogle ScholarPubMed
Acharya, S.; Das, B.; Thupakula, U.; Ariga, K.; Sarma, D. D.; Israelachvili, J.; Golan, Y. A Bottom-Up Approach toward Fabrication of Ultrathin PbS Sheets. Nano Lett. 2013, 13, 409415.CrossRefGoogle ScholarPubMed
Dogan, S.; Bielewicz, T.; Cai, Y.; Klinke, C. Field–effect transistors made of individual colloidal PbS nanosheets. Appl. Phys. Lett. 2012, 101, 073102.CrossRefGoogle Scholar
Nagel, M.; Hickey, S. G.; Frömsdorf, A.; Kornowski, A.; Horst, W. Synthesis of Monodisperse PbS Nanoparticles and Their Assembly into Highly Ordered 3D Colloidal Crystals. Zeitschrift für Physikalische Chemie 2009, 221, 427.CrossRefGoogle Scholar
Hines, M. A.; Scholes, G. D. Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution. Adv Mater 2003, 15, 18441849.CrossRefGoogle Scholar
Bhandari, G. B.; Subedi, K.; He, Y.; Jiang, Z.; Leopold, M.; Reilly, N.; Lu, H. P.; Zayak, A. T.; Sun, L. Thickness-Controlled Synthesis of Colloidal PbS Nanosheets and Their Thickness-Dependent Energy Gaps. Chem. Mater. 2014, 26, 54335436.CrossRefGoogle Scholar
Bastard, G.; Brum, J. A. Electronic states in semiconductor heterostructures. Quantum Electronics, IEEE Journal of 1986, 22, 16251644.CrossRefGoogle Scholar
Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933937.CrossRefGoogle Scholar
Chemla, D. S.; Miller, D. A. B.; Smith, P. W.; Gossard, A. C.; Wiegmann, W. Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures. Quantum Electronics, IEEE Journal of 1984, 20, 265275.CrossRefGoogle Scholar
Schmitt-Rink, S.; Chemla, D. S.; Miller, D. A. B. Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys. 1989, 38, 89188.CrossRefGoogle Scholar
Bartnik, A. C.; Efros, A. L.; Koh, W. K.; Murray, C. B.; Wise, F. W. Electronic states and optical properties of PbSe nanorods and nanowires. Phys. Rev. B 2010, 82, 195313.CrossRefGoogle Scholar
Wang, Y.; Suna, A.; Mahler, W.; Kasowski, R. PbS in polymers. From molecules to bulk solids. J. Chem. Phys. 1987, 87, 73157322.CrossRefGoogle Scholar
Wise, F. W. Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 2000, 33, 773780.CrossRefGoogle ScholarPubMed
Kang, I.; Wise, F. W. Electronic structure and optical properties of PbS and PbSe quantum dots. J Opt Soc Am B 1997, 14, 16321632.CrossRefGoogle Scholar
Moreels, I.; Lambert, K.; Smeets, D.; De Muynck, D.; Nollet, T.; Martins, J. C.; Vanhaecke, F.; Vantomme, A.; Delerue, C.; Allan, G.; Hens, Z. Size-Dependent Optical Properties of Colloidal PbS Quantum Dots. ACS Nano 2009, 3, 30233030.CrossRefGoogle ScholarPubMed
Baumgardner, W. J.; Whitham, K.; Hanrath, T. Confined-but-Connected Quantum Solids via Controlled Ligand Displacement. Nano Lett. 2013, 13, 32253231.CrossRefGoogle ScholarPubMed