Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:14:00.161Z Has data issue: false hasContentIssue false

Colloidal Solution of Metal Nanoparticles as a Catalyst for Carbon Nanotube Growth

Published online by Cambridge University Press:  15 March 2011

Hiroki Ago
Affiliation:
National Institute of Materials and Chemical Research (NIMC), Tsukuba 305-8565, Japan
Satoshi Ohshima
Affiliation:
National Institute of Materials and Chemical Research (NIMC), Tsukuba 305-8565, Japan
Toshiki Komatsu
Affiliation:
Fine Ceramics Center (JFCC), 2-4-3 Nishi-Shinbashi, Tokyo, 105-0003, Japan
Yasunori Kuriki
Affiliation:
National Institute of Materials and Chemical Research (NIMC), Tsukuba 305-8565, Japan
Motoo Yumura
Affiliation:
National Institute of Materials and Chemical Research (NIMC), Tsukuba 305-8565, Japan
Get access

Abstract

Aligned multi-wall carbon nanotubes (MWNTs) were successfully grown on a Si substrate based on a thermal chemical vapor deposition (CVD) method. We employed Co metal nanoparticles as the catalyst for nanotube growth, which were prepared by a reverse micelle method. The reverse micelle method provides nanoparticles covered with surfactants so that they are dispersed in organic solvent and, thus highly processible. The present MWNT arrays are promising for application in field emission displays, because of much lower nanotube density compared with the previously reported arrays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dai, H., Kong, J., Zhou, C., Franklin, N., Tombler, T., Cassell, A., Fan, S. and Chapline, M., J. Phys. Chem., B103, 11246 (1999).Google Scholar
2. Mukhopadhyay, K., Koshio, A., Sugai, T., Tanaka, N., Shinohara, H., Konya, Z., and Nagy, J.B. , Chem. Phys. Lett., 303, 117 (1999).Google Scholar
3. Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., and Dai, H., Science, 283, 52 (1999).Google Scholar
4. Terrones, M., Grobert, N., Olivares, J., Zhang, J.P., Terrones, H., Kordatos, K., Hsu, W.K., Hare, J.P., Townsend, P.D., Prassides, K., Cheetham, A.K., Kroto, H.W., and Walton, D.R.M., Nature, 388 52 (1997).Google Scholar
5. Bower, C., Zhu, W., Jin, S., and Zhou, O., Appl. Phys. Lett., 77, 830 (2000).Google Scholar
6. Ago, H., Komatsu, T., Ohshima, S., Kuriki, Y., and Yumura, M., Appl. Phys. Lett., 77, 79 (2000).Google Scholar
7. Lee, C. J., Park, J. H., and Park, J., Chem. Phys. Lett., 323, 560 (2000).Google Scholar
8. Katsuki, H., Matsunaga, K., Egashira, M., and Kawasumi, S., Carbon, 19, 148 (1981).Google Scholar
9. Kiang, C. H., Goddard, W. A. III, Beyers, R., Salem, J. R., and Bethune, D. S., J. Phys. Chem., 98, 6612 (1994).Google Scholar
10. Huang, S., Dai, L., and Mau, A. W. H., J. Phys. Chem., B103, 4223 (1999).Google Scholar
11. Davydov, D. N., Sattari, P. A., AlMawlawi, D., Osika, A., Haslett, T. L., and Moskovits, M., J. Appl. Phys., 86, 3983 (1999).Google Scholar
12. Ago, H., Petritsch, K., Shaffer, M.S. P., Windle, A. H., and Friend, R. H., Adv. Mater., 11, 1281 (1999).Google Scholar