Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T06:50:36.964Z Has data issue: false hasContentIssue false

Combined HRTEM and EFTEM Study of Precipitates in Tungsten and Chromium-Containing TiB2

Published online by Cambridge University Press:  10 February 2011

W. Mader
Affiliation:
Institut für Anorganische Chemie, Universität Bonn, D-53117 Bonn, Germany, mader@uni-bonn.de
B. Freitag
Affiliation:
Institut für Anorganische Chemie, Universität Bonn, D-53117 Bonn, Germany
K. Kelm
Affiliation:
Institut für Anorganische Chemie, Universität Bonn, D-53117 Bonn, Germany
R. Telle
Affiliation:
Institut für Gesteinshüttenkunde der RWTH Aachen, D-52064 Aachen, Germany
C. Schmalzried
Affiliation:
Institut für Gesteinshüttenkunde der RWTH Aachen, D-52064 Aachen, Germany
Get access

Abstract

The structure and chemical composition of two types of precipitates in the system TiB2-WB2-CrB2 were studied by means of high-resolution TEM and energy filtering TEM. Type I particles (W2B5 structure) are precipitated at the basal plane of the hexagonal matrix whereas type II precipitates are thin platelets lying parallel to the {1100} prism planes. Lattice imaging yields displacements of the metal positions with respect to the matrix. Information on the chemical composition at high lateral resolution is obtained from elemental maps of all chemical constituents using electron spectroscopic imaging (ESI). The type II precipitates show a decrease in the B and Ti concentration, whereas the tungsten concentration increases and the Cr is homogeneously distributed. The HRTEM results combined with the results of the elemental maps allow to develop a structural model based on the intergrowth of the β-WB structure in the TiB2-rich matrix. The two deficient boron layers in W0.5Ti0.5B with a spacing of 0.38 nm can be used to examine the resolution limit of ESI.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mitra, I. and Telle, R., J. Solid. State Chem. 133, 25 (1997).Google Scholar
2.Schmalzried, C. and Telle, R., 13th. International Symposion on Boron, Borides and Related Compounds, to be published (1999).Google Scholar
3.Krivanek, O.L. et al. , Microsc. Microanal. Microstruct. 3, 187 (1992).Google Scholar
4.Norton, J.T., Blumenthal, H. and Sindeband, S.J., Trans. AIME 185, 739 (1949).Google Scholar
5.Kiessling, R., Acta Chem. Scand. 1, 893 (1947).Google Scholar
6.Post, B. and Glaser, F.W., J. Chem. Phys. 20, 1050 (1952).Google Scholar
7.Hofer, F., Warbichler, P., and Grogger, P., Ultramicroscopy 59, 15 (1995).Google Scholar
8.Hofer, F., Warbichler, P., Buchmayer, B., and Kleber, S., J. Microsc. 184, 163 (1996).Google Scholar
9.Freitag, B., Mader, W., J. Microsc. 194, 42 (1999).Google Scholar
10.Stadelman, P., Ultramicroscopy 35, 43 (1987).Google Scholar