Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T14:16:18.785Z Has data issue: false hasContentIssue false

Common Features of Epitaxial Growth on Vicinal GaAs(001), AlAs(001) and InAs(001) Surfaces

Published online by Cambridge University Press:  15 February 2011

T. Shitara
Affiliation:
The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom Interdisciplinary Research Centre for Semiconductor Materials, Imperial College, London SW7 2BZ, United Kingdom
D. D. Vvedensky
Affiliation:
The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
J. H. Neave
Affiliation:
Interdisciplinary Research Centre for Semiconductor Materials, Imperial College, London SW7 2BZ, United Kingdom
B. A. Joyce
Affiliation:
Interdisciplinary Research Centre for Semiconductor Materials, Imperial College, London SW7 2BZ, United Kingdom
Get access

Abstract

We have carried out RHEED measurements and Monte Carlo simulations of the growth on GaAs(001), AlAs(001) grown on GaAs(001), and InAs(001) to address the common features of the growth near the transition to step flow. For a fixed V/IIl ratio, the cation flux and misorientation-angle dependencies of the transition temperature on AlAs(001) and InAs(001) follow the same pattern as on GaAs(001). The same anisotropic behavior was also obtained, in that the transition temperature on a surface misoriented toward [110] is higher than that on a surface misoriented toward [110]. Unlike the case of GaAs(001), however, the surface reconstruction could not be kept constant near the growth mode transition for AlAs(001) and InAs(001). Therefore, we cannot compare simulations with experiments in as much detail as we have done for GaAs(001). Nevertheless, we can still estimate the effective surface migration barrier for Al adatoms on AlAs(001) as approximately 1.74eV and for In adatoms on InAs(001) as at most 1.23eV. This value should be compared with the value of 1.58eV obtained for GaAs(001).

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Neave, J.H., Joyce, B.A., Dobson, P.J. and Norton, N., Appl. Phys. A 31, 1 (1983).Google Scholar
2. Neave, J.H., Dobson, P.J., Joyce, B.A. and Zhang, J., Appl. Phys. Lett. 47, 100 (1985).CrossRefGoogle Scholar
3. Shitara, T., Vvedensky, D.D., Wilby, M.R., Zhang, J., Neave, J.H. and Joyce, B.A., Appl. Phys. Lett., 60, 1504 (1992); Phys. Rev. B 46, 6815 (1992).Google Scholar
4. Clarke, S., Vvedensky, D.D. and Wilby, M.R., Surf. Sci. 255, 91 (1991).Google Scholar
5. Šmilauer, P., Wilby, M.R. and Vvedensky, D.D., Phys. Rev. B 47, 4119 (1993).Google Scholar
6. Yokotsuka, T., Wilby, M.R., Vvedensky, D.D., Kawamura, T., Fukutani, K. and Ino, S., Appl. Phys. Lett. 62, 1673 (1993).Google Scholar
7. Sudijono, J., Johnson, M.D., Snyder, C.W., Elowitz, M.B. and Orr, B.C., Phys. Rev. Lett. 69, 2811 (1992).CrossRefGoogle Scholar
8. Zhang, J., Neave, J.H., Joyce, B.A., Dobson, P.J. and Fawcett, P.N., Surf. Sci. 231, 379 (1990).Google Scholar
9. Shitara, T., Neave, J.H. and Joyce, B.A., Appl. Phys. Lett. 62, 1658 (1993).Google Scholar
10. Toyoshima, H., Shitara, T., Fawcett, P. N., Zhang, J., Neave, J.H. and Joyce, B.A., J. Appl. Phys. 73, 2333 (1993).Google Scholar
11. Neave, J.H., Joyce, B.A. and Dobson, P.J., Appl. Phys. A 34, 179 (1984).Google Scholar
12. Yamaguchi, H. and Horikoshi, H., Phys. Rev. Lett., 70, 1299 (1993).Google Scholar
13. Shitara, T., Vvedensky, D.D., Wilby, M.R., Zhang, J., Neave, J.H. and Joyce, B.A., Phys. Rev. B 46, 6825 (1992).Google Scholar
14. Shitara, T., Zhang, J., Neave, J.H. and Joyce, B.A., J. Appl. Phys. 71 4299 (1992).Google Scholar
15. Weeks, J.D. and Gilmer, G.H., Adv. Chem. Phys. 40, 157 (1979).Google Scholar
16. Chen, P., Kim, J.Y., Madhukar, A. and Cho, N.M., J. Vac. Sci. Technol. B4, 890 (1986).Google Scholar