Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T00:47:27.236Z Has data issue: false hasContentIssue false

Comparative studies on photovoltaic performance of InN nanostructures/p-Si(100) heterojunction devices grown by molecular beam epitaxy

Published online by Cambridge University Press:  11 July 2012

Thirumaleshwara N Bhat
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore- 560012, INDIA
Mohana K Rajpalke
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore- 560012, INDIA
Mahesh Kumar
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore- 560012, INDIA Central Research Laboratory, Bharat Electronics, Bangalore-560013, INDIA
Basanta Roul
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore- 560012, INDIA Central Research Laboratory, Bharat Electronics, Bangalore-560013, INDIA
S B Krupanidhi*
Affiliation:
Materials Research Centre, Indian Institute of Science, Bangalore- 560012, INDIA
*
*Corresponding author: sbk@mrc.iisc.ernet.in
Get access

Abstract

Comparative studies have been carried out on the performance of the photovoltaic devices with dissimilar shapes of the InN nanostructures fabricated on p-Si (100). The devices fabricated with the nanodots show a superior performance compared to the devices fabricated with the nanorods. The discussions have been carried out on the superior junction property, larger effective junction area and inherent random pyramidal topographical texture of the cell fabricated with nanodots. Such single junction devices exhibit a promising fill factor and external quantum efficiency of 38% and 27%, respectively, under concentrated AM1.5 illumination.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lang, J. R., Neufeld, C. J., Hurni, C. A., Cruz, S. C., Matioli, E., Mishra, U. K., and Speck, J. S. High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy Appl. Phys. Lett 98, 131115 (2011).Google Scholar
2. Dahal, R., Li, J., Aryal, K., Lin, J. Y., and Jiang, H. X. Appl. Phys. Lett InGaN/GaN multiple quantum well concentrator solar cells 97, 073115 (2010).Google Scholar
3. Shu, G.W., Lo, M.H., Yang, M.D., Hsu, C.L., Shen, J.L., Lan, S.M. Carrier localization in InN epilayers grown on Si substrates Solid State Communications 141 109 (2007).Google Scholar
4. Henry, C. H., “ Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells J. Appl. Phys 51 4494 (1980).Google Scholar
5. Ajagunna, A. O., Adikimenakis, A., Iliopoulos, E., Tsagaraki, K., Androulidaki, M., Georgakilas, A. InN films and nanostructures grown on Si (111) by RF-MBE J. Crystal. Growth 311, 2058 (2009).Google Scholar
6. Kim, M. D., Park, S. R., Oh, J. E., Kim, S. G., Yang, W. C., and Koo, B.-H. The growth and characterization of an InN layer on AlN/Si (1 1 1) J. Crystal. Growth 311, 2016 (2009).Google Scholar
7. Nguyen, H. P. T., Chang, Y. L., Shih, I., and Mi, Z. InN p-i-n Nanowire Solar Cells on Si IEEE Journal of Selected Topics in Quantum Electronics 1 (2010).Google Scholar
8. Demangeot, F., Frandon, J., Pinquier, C., Caumont, M., Briot, O., Maleyre, B., Clur- Ruffenach, S., Gil, B. Raman scattering in large single indium nitride dots: Correlation between morphology and strain Phy. Rev. B 68 245308 (2003).Google Scholar
9. Vanecek, M., Babchenko, O., Purkrt, A., Holovsky, J., Neykova, N., Poruba, A., Remes, Z., Meier, J., and Kroll, U. Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential Appl. Phys. Lett 98, 163503 (2011).Google Scholar
10. Campbell, P. and Green, M. A. Light trapping properties of pyramidally textured surfaces J. Appl. Phys. 62 243 (1987).Google Scholar
11. Bhat, T. N., Roul, B., Rajpalke, M. K., Kumar, M., Krupanidhi, S. B., and Sinha, N. Temperature dependent transport behavior of n-InN nanodot/p -Si heterojunction structures Appl. Phys. Lett 97, 202107 (2010).Google Scholar
12. Bhat, T. N., Kumar, M., Rajpalke, M. K., Roul, B., Krupanidhi, S. B., and Sinha, Neeraj Band alignment studies in InN/p-Si(100) heterojunctions by x-ray photoelectron spectroscopy J. Appl. Phys 109, 123707 (2011).Google Scholar
13. Zimmler, M. A., Bao, J., Shalish, I., Yi, W., Yoon, J., Narayanamurti, V. and Capasso, F. Electroluminescence from single nanowires by tunnel injection: An experimental study Nanotechnology 18 235205 (2007).Google Scholar
14. Yang, B., Trampert, A., Brandt, O., Jenichen, B., and Ploog, K. H., “ Structural properties of GaN layers on Si(001) grown by plasma-assisted molecular beam epitaxy J. Appl. Phy. 83, 3800 (1998).Google Scholar
15. Singh, R. and Shewchun, J. Photovoltaic effect in MIS diodes or Schottky diodes with an interfacial layer Appl. Phys. Lett 28, 512 (1976).Google Scholar
16. Shewchun, J., Dubow, J., Myszkowski, A. and Singh, R. The operation of the semiconductor-insulator-semiconductor (SIS) solar cell: Theory J. Appl. Phys. 49 855(1978).Google Scholar
17. Bhat, T. N., Rajpalke, M. K., Roul, B., Kumar, M., and Krupanidhi, S. B. Substrate nitridation induced modulations in transport properties of wurtzite GaN/p-Si (100) heterojunctions grown by molecular beam epitaxy J. Appl. Phys. 110, 093718 (2011).Google Scholar
18. Casey, H.C. Jr. Muth, J., Krishnankutty, S. and Zavada, J.M., “ Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light emitting diodes Appl. Phys.Lett. 68, 2867 (1996).Google Scholar
19. Werner, J. H. and Güttler, H. H., “ Barrier inhomogeneities at Schottky contacts J. Appl. Phys. 69, 1522 (1991).Google Scholar