Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T19:34:22.986Z Has data issue: false hasContentIssue false

Comparative Study of Electronic Properties of Point Defects in Monoclinic Hafnium Dioxide

Published online by Cambridge University Press:  01 February 2011

Valerie Cuny
Affiliation:
valerie.cuny@cea.fr, CEA, DIF, BP 12, Bruyères-le-Châtel, 91680, France
Nicolas Richard
Affiliation:
nicolas.richard@cea.fr, DIF, CEA, BP 12, Bruyères-le-Châtel, 91680, France
Get access

Abstract

Continuous downscaling of transistor leads silicon dioxide constituting the gate in typical metal oxide semiconductor field effect (MOSFET) to its limits. One possibility is to replace SiO2 by a material of higher dielectric constant (high-k). Hafnium dioxide seems to be the most promising one. However, high-k transistor performances are often affected by the presence of defects creating charge traps or diffusion centers. In this paper, using a pseudopotential plane wave code in the density-functional total theory framework, we calculate in a monoclinic HfO2 supercell the structure, formation and ionization energies, electron affinities of intrinsic defects (oxygen vacancy and interstitial, and hafnium vacancy). We consider different charge states of these defects. The positions of defect levels with respect to the bottom of silicon conduction band are determined. Our results will be discussed and compared to literature data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wilk, G.D., Wallace, R.M., and Anthony, J.M., J. Appl. Phys. 87, 484 (2000)Google Scholar
2. Lee, B.H., Kang, L., Nieh, R., Qi, W.-J., and Lee, J.C., Appl. Phys. Lett. 76, 1926 (2000)Google Scholar
3. Balog, M., Schieber, M., Michiman, M., and Patai, S., Thin Solid Films 41, 247 (1977)Google Scholar
4. Foster, A.S., Gejo, F. Lopez, Shluger, A.L., and Nieminen, R.M., Phys. Rev. B 65, 174117 (2002)Google Scholar
5. Takeuchi, H., Wong, H.Y., Ha, D., and King, T.-J., IEDM Tech. Dig., p. 829 (2004)Google Scholar
6. Gavartin, J.L., Ramo, D. Muñoz, Shluger, A.L., Bersuker, G., and Lee, B.H., Appl. Phys. Lett. 89, 082908 (2006)Google Scholar
7. Robertson, J., Xiong, K., and Clark, S.J., Thin Solid Films 496, 1 (2006)Google Scholar
8. Scopel, W.L., Silva, A.J.R. da, Orellana, W., and Fazzio, A., Appl. Phys. Lett. 84, 1492 (2004)Google Scholar
9. Mukhopadhyay, A.B., Sanz, J.F., and Musgrave, C.B., Phys. Rev. B 73, 115330 (2006)Google Scholar
10. Kang, J., Lee, E.-C., and Chang, K.J., Phys. Rev. B 68, 054106 (2003)Google Scholar
11. Foster, A.S., Sulimov, V.B., Gejo, F. Lopez, Shluger, A.L., and Nieminen, R.M., Phys. Rev. B 64, 224108 (2001)Google Scholar
12.a) Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996); b) G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996)Google Scholar
13. Perdew, J.P, Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992)Google Scholar
14. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990)Google Scholar
15. Wang, J., Li, H.P., and Stevens, R., J. Mat. Sci. 27, 5397 (1992)Google Scholar
16. Králik, B., Chang, E.K., and Louie, S.G., Phys. Rev. B 57, 7027 (1998)Google Scholar
17. Crocombette, J.P., Phys. Chem. Miner. 27, 138 (1999)Google Scholar
18. Gavartin, J.L., Fonseca, L., Bersuker, G., and Shluger, A.L., Microelec. Eng. 80, 412 (2005)Google Scholar