Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T11:14:30.519Z Has data issue: false hasContentIssue false

A Comparison of Ellipsometer and Rbs Analysis of Implant Damage in Silicon

Published online by Cambridge University Press:  15 February 2011

W. M. Paulson
Affiliation:
Semiconductor Research and Development Laboratory, Motorola, Inc.5005 E. McDowell Road, Phoenix, Arizona, USA
S. R. Wilson
Affiliation:
Semiconductor Research and Development Laboratory, Motorola, Inc.5005 E. McDowell Road, Phoenix, Arizona, USA
C. W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
B. R. Appleton
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
Get access

Abstract

The purpose of this study is to analyze ion implant damage profile using RBS and ellipsometry. Silicon wafers were implanted with 75As at 100, 200 or 300 keV; doses were chosen to generate constant peak impurity concentrations at each energy. The samples were then analyzed using RBS to obtain damage- depth profiles and ellipsometry to obtain Δ,ψ parameters. At light doses decreasingΔ values correspond to increased scattering yield; at higher doses ψ increases rapidly as the scattering yield approaches the random value. The higher energy implants shift the Δ-ψ curves to larger ψ values. Multilayer structures, that include lightly damaged silicon on either side of the project range as well as more damaged near the projected range, are required to model the ellipsometer parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Towsend, P. D. and Valette, S., “Optical Effects of Ion Implantation,” in Ion Implantation, ed. Hirvonen, J. K., Chap. 11, Academic Press, NY, 1980.Google Scholar
2. Mayer, J. W., Eriksson, L. and Davies, J. A., Ion Implantation in Semiconductors, Academic Press, N.Y., 1970.Google Scholar
3. McGill, T. C., Kurtin, S. L. and Shifrin, G. A., J. Appl. Phys. 41, 246 (1970).CrossRefGoogle Scholar
4. Crowder, B. L. et al. , Appl. Phys. Lett. 16, 205 (1970).Google Scholar
5. Olson, G. L.et al., in Laser and Electron-Beam Solid Interactions and Materials Processing, ed. Gibbons, J. F., Hess, L. D. and Sigmon, T. W., Elsevier North Holland, N.Y., 1981, p. 125.Google Scholar
6. Ready, J. F.et al., in Laser and Electron-Beam Solid Interactions and Materials Processing, ed. Gibbons, J. F., Hess, L. D. and Sigmon, T. W., Elsevier North Holland, N.Y., 1981, p. 133.Google Scholar
7. Adams, J. R. and Bashara, N. M., Surface Science 49, 441 (1975).Google Scholar
8. Ohira, F. and Itakura, M., Jap. J. Appl. Phys. 21, 42 (1982).Google Scholar
9. Nakamura, K., Gotoh, T. and Kamoshida, M., J. Appl. Phys. 50, 3985 (1979).CrossRefGoogle Scholar
10. Motooka, T. and Watanabe, K., J. Appl. Phys. 51, 4125 (1980).Google Scholar
11. Delfino, M. and Razouk, R. R., J. Appl. Phys. 52, 386 (1981).Google Scholar
12. Delfino, M. and Razouk, R. R., J. Electrochem. Soc. 129, 606 (1982).Google Scholar
13. Kim, Q. and Park, Y. S., J. Appl. Phys. 51, 2024 (1980).Google Scholar
14. Bayley, A. R. and Townsend, P. D., J. Phys. D:Appl. Phys. 6, 1115 (1973).Google Scholar
15. McCrackin, F. L., NBS Technical Note 479, 1969.Google Scholar
16. Brice, D. K., Ion Implantation Range and Energy Deposition Distribution, IFI/Plenum, New York, 1971.Google Scholar